100791: [AtCoder]ABC079 B - Lucas Number

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $200$ points

Problem Statement

It is November $18$ now in Japan. By the way, $11$ and $18$ are adjacent Lucas numbers.

You are given an integer $N$. Find the $N$-th Lucas number.

Here, the $i$-th Lucas number $L_i$ is defined as follows:

  • $L_0=2$
  • $L_1=1$
  • $L_i=L_{i-1}+L_{i-2} (i≥2)$

Constraints

  • $1≤N≤86$
  • It is guaranteed that the answer is less than $10^{18}$.
  • $N$ is an integer.

Input

Input is given from Standard Input in the following format:

$N$

Output

Print the $N$-th Lucas number.


Sample Input 1

5

Sample Output 1

11
  • $L_0=2$
  • $L_1=1$
  • $L_2=L_0+L_1=3$
  • $L_3=L_1+L_2=4$
  • $L_4=L_2+L_3=7$
  • $L_5=L_3+L_4=11$

Thus, the $5$-th Lucas number is $11$.


Sample Input 2

86

Sample Output 2

939587134549734843

Input

题意翻译

**【题目描述】** 给你一个数列 $L$,规定: $L_0=2$ $L_1=1$ 而第 $i$ 个数是:$L_i=L_{i-1}+L_{i-2}$。 现在给出一个正整数 $n$,求这个数组的第 $n$ 项。 **【输入格式】** 一行,一个正整数 $n$。 **【输出格式】** 一行,即这个数列的第 $n$ 项。 **【数据范围】** $1 \leq n \leq 86$,$L_n$ 保证小于 $10^{18}$。 **【样例解释】** $L_0=2$ $L_1=1$ $L_2=L_0+L_1=3$ $L_3=L_1+L_2=4$ $L_4=L_2+L_3=7$ $L_5=L_3+L_4=11$

加入题单

上一题 下一题 算法标签: