101011: [AtCoder]ABC101 B - Digit Sums

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $200$ points

Problem Statement

Let $S(n)$ denote the sum of the digits in the decimal notation of $n$. For example, $S(101) = 1 + 0 + 1 = 2$.

Given an integer $N$, determine if $S(N)$ divides $N$.

Constraints

  • $1 \leq N \leq 10^9$

Input

Input is given from Standard Input in the following format:

$N$

Output

If $S(N)$ divides $N$, print Yes; if it does not, print No.


Sample Input 1

12

Sample Output 1

Yes

In this input, $N=12$. As $S(12) = 1 + 2 = 3$, $S(N)$ divides $N$.


Sample Input 2

101

Sample Output 2

No

As $S(101) = 1 + 0 + 1 = 2$, $S(N)$ does not divide $N$.


Sample Input 3

999999999

Sample Output 3

Yes

Input

题意翻译

* $S(n)$表示$n$的数字根,也就是在$10$进制下每一位的和如$S(102)=1+0+2=3$,$102$的数字根是$3$ 输入$n$,如果$n$能被$S(n)$整除,输出$Yes$否则输出$No$ 感谢$@RioBlu$提供的翻译

加入题单

上一题 下一题 算法标签: