101123: [AtCoder]ABC112 D - Partition

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

You are given integers $N$ and $M$.

Consider a sequence $a$ of length $N$ consisting of positive integers such that $a_1 + a_2 + ... + a_N$ = $M$. Find the maximum possible value of the greatest common divisor of $a_1, a_2, ..., a_N$.

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 10^5$
  • $N \leq M \leq 10^9$

Input

Input is given from Standard Input in the following format:

$N$ $M$

Output

Print the maximum possible value of the greatest common divisor of a sequence $a_1, a_2, ..., a_N$ that satisfies the condition.


Sample Input 1

3 14

Sample Output 1

2

Consider the sequence $(a_1, a_2, a_3) = (2, 4, 8)$. Their greatest common divisor is $2$, and this is the maximum value.


Sample Input 2

10 123

Sample Output 2

3

Sample Input 3

100000 1000000000

Sample Output 3

10000

Input

题意翻译

给你 $2$ 个整数 $N,M$。 你需要构造一个有 $N$ 个数的正整数序列 $a$,满足以下条件: + $\sum\limits_{i=1}^{N}a_i=M$ 求 $\gcd\limits_{i=1}^{N}a_i$ 可能的最大值。 $1\le N\le M\le 10^{9}$

加入题单

上一题 下一题 算法标签: