101133: [AtCoder]ABC113 D - Number of Amidakuji

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score: $400$ points

Problem Statement

Amidakuji is a traditional method of lottery in Japan.

To make an amidakuji, we first draw $W$ parallel vertical lines, and then draw horizontal lines that connect them. The length of each vertical line is $H+1$ [cm], and the endpoints of the horizontal lines must be at $1, 2, 3, ...,$ or $H$ [cm] from the top of a vertical line.

A valid amidakuji is an amidakuji that satisfies the following conditions:

  • No two horizontal lines share an endpoint.
  • The two endpoints of each horizontal lines must be at the same height.
  • A horizontal line must connect adjacent vertical lines.

Find the number of the valid amidakuji that satisfy the following condition, modulo $1\ 000\ 000\ 007$: if we trace the path from the top of the leftmost vertical line to the bottom, always following horizontal lines when we encounter them, we reach the bottom of the $K$-th vertical line from the left.

For example, in the following amidakuji, we will reach the bottom of the fourth vertical line from the left.

Constraints

  • $H$ is an integer between $1$ and $100$ (inclusive).
  • $W$ is an integer between $1$ and $8$ (inclusive).
  • $K$ is an integer between $1$ and $W$ (inclusive).

Input

Input is given from Standard Input in the following format:

$H$ $W$ $K$

Output

Print the number of the amidakuji that satisfy the condition, modulo $1\ 000\ 000\ 007$.


Sample Input 1

1 3 2

Sample Output 1

1

Only the following one amidakuji satisfies the condition:


Sample Input 2

1 3 1

Sample Output 2

2

Only the following two amidakuji satisfy the condition:


Sample Input 3

2 3 3

Sample Output 3

1

Only the following one amidakuji satisfies the condition:


Sample Input 4

2 3 1

Sample Output 4

5

Only the following five amidakuji satisfy the condition:


Sample Input 5

7 1 1

Sample Output 5

1

As there is only one vertical line, we cannot draw any horizontal lines. Thus, there is only one amidakuji that satisfies the condition: the amidakuji with no horizontal lines.


Sample Input 6

15 8 5

Sample Output 6

437760187

Be sure to print the answer modulo $1\ 000\ 000\ 007$.

Input

题意翻译

阿弥陀籤是日本一项古老的占卜方式。 为了制作一份阿弥陀籤,我们需要绘制 $W$ 条竖线,然后再绘制一些横线连接它们。每条竖线的长度为 $(H + 1) \text{ cm}$,它们被横线连接的位置一定会在距离顶端 $1, 2, 3, \ldots, H \text{ cm}$ 中的一处。 我们称一个阿弥陀籤是合法的,当且仅当其能满足以下条件: - 不存在两条端点重合的横线。 - 一条横线的两端点必须在同一高度。 - 一条横线连接的需要是相邻的两条竖线。 ![](https://cdn.luogu.com.cn/upload/vjudge_pic/AT4248/76ad4dbaf6281d141632ee1be437fcd6eb62cf06.png) 请找到满足如下条件的合法阿弥陀籤的数量,对 $10 ^ 9 + 7$ 取模:如果我们从最左侧的竖线顶部出发往下,策略是在每次遇到横线时都选择经过它,最终到达从左到右第 $K$ 条竖线的底部。 举例来说,在下图的阿弥陀籤中,我们最终会到达从左到右第四条竖线的底部。 ![](https://cdn.luogu.com.cn/upload/vjudge_pic/AT4248/798f2b4676c5cd94b2fff66ef18034da71e67ad6.png)

加入题单

上一题 下一题 算法标签: