101203: [AtCoder]ABC120 D - Decayed Bridges

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

There are $N$ islands and $M$ bridges.

The $i$-th bridge connects the $A_i$-th and $B_i$-th islands bidirectionally.

Initially, we can travel between any two islands using some of these bridges.

However, the results of a survey show that these bridges will all collapse because of aging, in the order from the first bridge to the $M$-th bridge.

Let the inconvenience be the number of pairs of islands $(a, b)$ ($a < b$) such that we are no longer able to travel between the $a$-th and $b$-th islands using some of the bridges remaining.

For each $i$ $(1 \leq i \leq M)$, find the inconvenience just after the $i$-th bridge collapses.

Constraints

  • All values in input are integers.
  • $2 \leq N \leq 10^5$
  • $1 \leq M \leq 10^5$
  • $1 \leq A_i < B_i \leq N$
  • All pairs $(A_i, B_i)$ are distinct.
  • The inconvenience is initially $0$.

Input

Input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_M$ $B_M$

Output

In the order $i = 1, 2, ..., M$, print the inconvenience just after the $i$-th bridge collapses. Note that the answer may not fit into a $32$-bit integer type.


Sample Input 1

4 5
1 2
3 4
1 3
2 3
1 4

Sample Output 1

0
0
4
5
6

For example, when the first to third bridges have collapsed, the inconvenience is $4$ since we can no longer travel between the pairs $(1, 2), (1, 3), (2, 4)$ and $(3, 4)$.


Sample Input 2

6 5
2 3
1 2
5 6
3 4
4 5

Sample Output 2

8
9
12
14
15

Sample Input 3

2 1
1 2

Sample Output 3

1

Input

题意翻译

给定一个 $n$ 个点,$m$ 条边的无向图, 现在每次删除一条仍未被删除的边,共删除 $m$ 次。(每次删除操作时给定边的编号) 定义 $D(x,y)$ 表示 $x$ 和 $y$ 是否**不能连通** 对于每一次删除操作后,输出 $$ \sum_{1\leq x<y\leq n}D(x,y) $$ 注意答案可能不在int范围内

加入题单

上一题 下一题 算法标签: