101305: [AtCoder]ABC130 F - Minimum Bounding Box

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

There are $N$ points in a two-dimensional plane. The initial coordinates of the $i$-th point are $(x_i, y_i)$. Now, each point starts moving at a speed of 1 per second, in a direction parallel to the $x$- or $y$- axis. You are given a character $d_i$ that represents the specific direction in which the $i$-th point moves, as follows:

  • If $d_i =$ R, the $i$-th point moves in the positive $x$ direction;
  • If $d_i =$ L, the $i$-th point moves in the negative $x$ direction;
  • If $d_i =$ U, the $i$-th point moves in the positive $y$ direction;
  • If $d_i =$ D, the $i$-th point moves in the negative $y$ direction.

You can stop all the points at some moment of your choice after they start moving (including the moment they start moving). Then, let $x_{max}$ and $x_{min}$ be the maximum and minimum among the $x$-coordinates of the $N$ points, respectively. Similarly, let $y_{max}$ and $y_{min}$ be the maximum and minimum among the $y$-coordinates of the $N$ points, respectively.

Find the minimum possible value of $(x_{max} - x_{min}) \times (y_{max} - y_{min})$ and print it.

Constraints

  • $1 \leq N \leq 10^5$
  • $-10^8 \leq x_i,\ y_i \leq 10^8$
  • $x_i$ and $y_i$ are integers.
  • $d_i$ is R, L, U, or D.

Input

Input is given from Standard Input in the following format:

$N$
$x_1$ $y_1$ $d_1$
$x_2$ $y_2$ $d_2$
$.$
$.$
$.$
$x_N$ $y_N$ $d_N$

Output

Print the minimum possible value of $(x_{max} - x_{min}) \times (y_{max} - y_{min})$.

The output will be considered correct when its absolute or relative error from the judge's output is at most $10^{-9}$.


Sample Input 1

2
0 3 D
3 0 L

Sample Output 1

0

After three seconds, the two points will meet at the origin. The value in question will be $0$ at that moment.


Sample Input 2

5
-7 -10 U
7 -6 U
-8 7 D
-3 3 D
0 -6 R

Sample Output 2

97.5

The answer may not be an integer.


Sample Input 3

20
6 -10 R
-4 -9 U
9 6 D
-3 -2 R
0 7 D
4 5 D
10 -10 U
-1 -8 U
10 -6 D
8 -5 U
6 4 D
0 3 D
7 9 R
9 -4 R
3 10 D
1 9 U
1 -6 U
9 -8 R
6 7 D
7 -3 D

Sample Output 3

273

Input

题意翻译

### 题目描述 平面上有 $N$ 个点,第 $i$ 个点的坐标是 $(x_i, y_i)$。现在,每个点开始沿着 $x$ 轴或 $y$ 轴方向以 $1$ 格每秒的速度移动。字符 $d_i$ 表示第 $i$ 个点的方向: * 如果 $d_i=$`R`,第 $i$ 个点沿 $x$ 轴正方向移动; * 如果 $d_i=$`L`,第 $i$ 个点沿 $x$ 轴负方向移动; * 如果 $d_i=$`U`,第 $i$ 个点沿 $y$ 轴正方向移动; * 如果 $d_i=$`D`,第 $i$ 个点沿 $y$ 轴负方向移动; 点开始移动后,你可以选择任意一个时刻(包括刚刚开始的那个时刻)停止所有点。停止后,分别记 $x_{max},x_{min}$ 为 $N$ 个点中 $x$ 坐标的最大值、最小值;同样,记 $y_{max},y_{min}$ 为 $N$ 个点中 $y$ 坐标的最大值、最小值。 你需要找出 $(x_{max}-x_{min})\times(y_{max}-y_{min})$ 的最小值并输出这个值。 ### 输入格式 输入来自以下格式的标准输入: --- $ N $ $ x_1 $ $ y_1 $ $ d_1 $ $ x_2 $ $ y_2 $ $ d_2 $ $\vdots$ $ x_N $ $ y_N $ $ d_N $ --- #### 输出格式 输出 $(x_{max}-x_{min})\times(y_{max}-y_{min})$ 可能的最小值。 当与答案的相对误差在 $10^{-9}$ 以内时,你的输出会被认为是正确的。 ### 数据范围 * $1 \le N \le 10^5$。 * $-10^8 \le x_i, y_i \le 10^8$。 * $x_i,y_i$ 都是整数。 * $d_i$ 是 `R`、`L`、`U`、`D` 的其中之一。 ### 样例说明 #### 样例 1/样例 4 第 $3$ 秒,两点在原点相遇,此时的答案是 $0$。 #### 样例 2/样例 5 答案也许不是整数。

加入题单

上一题 下一题 算法标签: