101325: [AtCoder]ABC132 F - Small Products

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:2 Solved:0

Description

Score : $600$ points

Problem Statement

Find the number of sequences of length $K$ consisting of positive integers such that the product of any two adjacent elements is at most $N$, modulo $10^9+7$.

Constraints

  • $1\leq N\leq 10^9$
  • 1 $2\leq K\leq 100$ (fixed at 21:33 JST)
  • $N$ and $K$ are integers.

Input

Input is given from Standard Input in the following format:

$N$ $K$

Output

Print the number of sequences, modulo $10^9+7$.


Sample Input 1

3 2

Sample Output 1

5

$(1,1)$, $(1,2)$, $(1,3)$, $(2,1)$, and $(3,1)$ satisfy the condition.


Sample Input 2

10 3

Sample Output 2

147

Sample Input 3

314159265 35

Sample Output 3

457397712

Input

题意翻译

求有多少种长度为 $K$ 的正整数序列,满足相邻元素乘积不超过 $N$,答案对 $10^9 + 7$ 取模。

加入题单

上一题 下一题 算法标签: