101332: [AtCoder]ABC133 C - Remainder Minimization 2019

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

You are given two non-negative integers $L$ and $R$. We will choose two integers $i$ and $j$ such that $L \leq i < j \leq R$. Find the minimum possible value of $(i \times j) \text{ mod } 2019$.

Constraints

  • All values in input are integers.
  • $0 \leq L < R \leq 2 \times 10^9$

Input

Input is given from Standard Input in the following format:

$L$ $R$

Output

Print the minimum possible value of $(i \times j) \text{ mod } 2019$ when $i$ and $j$ are chosen under the given condition.


Sample Input 1

2020 2040

Sample Output 1

2

When $(i, j) = (2020, 2021)$, $(i \times j) \text{ mod } 2019 = 2$.


Sample Input 2

4 5

Sample Output 2

20

We have only one choice: $(i, j) = (4, 5)$.

Input

题意翻译

### 题目描述 给出非负整数 $L$ 和 $R$,在这个区间里选择两个整数 $i$ 和 $j$ 满足 $L\le i < j\le R$。求 $(i\times j)\mod 2019$ 的最小值。 ### 输入格式 $L$ 和 $R$ ### 输出格式 $(i\times j)\mod 2019$ 的最小值 ### 数据范围 $ 0 \le L < R \le 2 \times 10^9$

加入题单

上一题 下一题 算法标签: