101332: [AtCoder]ABC133 C - Remainder Minimization 2019
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
You are given two non-negative integers $L$ and $R$. We will choose two integers $i$ and $j$ such that $L \leq i < j \leq R$. Find the minimum possible value of $(i \times j) \text{ mod } 2019$.
Constraints
- All values in input are integers.
- $0 \leq L < R \leq 2 \times 10^9$
Input
Input is given from Standard Input in the following format:
$L$ $R$
Output
Print the minimum possible value of $(i \times j) \text{ mod } 2019$ when $i$ and $j$ are chosen under the given condition.
Sample Input 1
2020 2040
Sample Output 1
2
When $(i, j) = (2020, 2021)$, $(i \times j) \text{ mod } 2019 = 2$.
Sample Input 2
4 5
Sample Output 2
20
We have only one choice: $(i, j) = (4, 5)$.