101365: [AtCoder]ABC136 F - Enclosed Points

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

We have a set $S$ of $N$ points in a two-dimensional plane. The coordinates of the $i$-th point are $(x_i, y_i)$. The $N$ points have distinct $x$-coordinates and distinct $y$-coordinates.

For a non-empty subset $T$ of $S$, let $f(T)$ be the number of points contained in the smallest rectangle, whose sides are parallel to the coordinate axes, that contains all the points in $T$. More formally, we define $f(T)$ as follows:

  • $f(T) := $ (the number of integers $i$ $(1 \leq i \leq N)$ such that $a \leq x_i \leq b$ and $c \leq y_i \leq d$, where $a$, $b$, $c$, and $d$ are the minimum $x$-coordinate, the maximum $x$-coordinate, the minimum $y$-coordinate, and the maximum $y$-coordinate of the points in $T$)

Find the sum of $f(T)$ over all non-empty subset $T$ of $S$. Since it can be enormous, print the sum modulo $998244353$.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $-10^9 \leq x_i, y_i \leq 10^9$
  • $x_i \neq x_j (i \neq j)$
  • $y_i \neq y_j (i \neq j)$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$x_1$ $y_1$
$:$
$x_N$ $y_N$

Output

Print the sum of $f(T)$ over all non-empty subset $T$ of $S$, modulo $998244353$.


Sample Input 1

3
-1 3
2 1
3 -2

Sample Output 1

13

Let the first, second, and third points be $P_1$, $P_2$, and $P_3$, respectively. $S = \{P_1, P_2, P_3\}$ has seven non-empty subsets, and $f$ has the following values for each of them:

  • $f(\{P_1\}) = 1$
  • $f(\{P_2\}) = 1$
  • $f(\{P_3\}) = 1$
  • $f(\{P_1, P_2\}) = 2$
  • $f(\{P_2, P_3\}) = 2$
  • $f(\{P_3, P_1\}) = 3$
  • $f(\{P_1, P_2, P_3\}) = 3$

The sum of these is $13$.


Sample Input 2

4
1 4
2 1
3 3
4 2

Sample Output 2

34

Sample Input 3

10
19 -11
-3 -12
5 3
3 -15
8 -14
-9 -20
10 -9
0 2
-7 17
6 -6

Sample Output 3

7222

Be sure to print the sum modulo $998244353$.

Input

题意翻译

【题意简述】 在平面上有 $n$ 个点,我们定义一个点集的权值为平面上包含这个点集的最小矩形所包含的点个数(矩形的边与坐标轴平行),求所有非空点集的权值和,保证每个点的横纵坐标互不相同。

加入题单

上一题 下一题 算法标签: