101375: [AtCoder]ABC137 F - Polynomial Construction

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

Given are a prime number $p$ and a sequence of $p$ integers $a_0, \ldots, a_{p-1}$ consisting of zeros and ones.

Find a polynomial of degree at most $p-1$, $f(x) = b_{p-1} x^{p-1} + b_{p-2} x^{p-2} + \ldots + b_0$, satisfying the following conditions:

  • For each $i$ $(0 \leq i \leq p-1)$, $b_i$ is an integer such that $0 \leq b_i \leq p-1$.
  • For each $i$ $(0 \leq i \leq p-1)$, $f(i) \equiv a_i \pmod p$.

Constraints

  • $2 \leq p \leq 2999$
  • $p$ is a prime number.
  • $0 \leq a_i \leq 1$

Input

Input is given from Standard Input in the following format:

$p$
$a_0$ $a_1$ $\ldots$ $a_{p-1}$

Output

Print $b_0, b_1, \ldots, b_{p-1}$ of a polynomial $f(x)$ satisfying the conditions, in this order, with spaces in between.

It can be proved that a solution always exists. If multiple solutions exist, any of them will be accepted.


Sample Input 1

2
1 0

Sample Output 1

1 1

$f(x) = x + 1$ satisfies the conditions, as follows:

  • $f(0) = 0 + 1 = 1 \equiv 1 \pmod 2$
  • $f(1) = 1 + 1 = 2 \equiv 0 \pmod 2$

Sample Input 2

3
0 0 0

Sample Output 2

0 0 0

$f(x) = 0$ is also valid.


Sample Input 3

5
0 1 0 1 0

Sample Output 3

0 2 0 1 3

Input

题意翻译

给出一个质数 $p$ 和长度为 $n$ 的数列 $a_0,\dots,a_{p-1}$,数列 $a$ 的每一项均为 $0$ 或 $1$。 要求找到一个次数不超过 $p-1$ 的多项式 $b$,使得 $f(x)=b_{p-1}x^{p-1}+b_{p-2}x^{p-2}+\dots+b_0$ 满足以下条件: - 对于任意的正整数 $i$($0 \le i \le p-1$),$0 \le b_i \le p-1$ 且 $b_i$ 为整数。 - 对于任意的正整数 $i$($0 \le i \le p-1$),$f(i) \equiv a_i \pmod p$。 保证 $2 \le p \le 2999$。可以证明一定有解,输出任意一组解即可。

加入题单

上一题 下一题 算法标签: