101393: [AtCoder]ABC139 D - ModSum

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

For an integer $N$, we will choose a permutation $\{P_1, P_2, ..., P_N\}$ of $\{1, 2, ..., N\}$.

Then, for each $i=1,2,...,N$, let $M_i$ be the remainder when $i$ is divided by $P_i$.

Find the maximum possible value of $M_1 + M_2 + \cdots + M_N$.

Constraints

  • $N$ is an integer satisfying $1 \leq N \leq 10^9$.

Input

Input is given from Standard Input in the following format:

$N$

Output

Print the maximum possible value of $M_1 + M_2 + \cdots + M_N$.


Sample Input 1

2

Sample Output 1

1

When the permutation $\{P_1, P_2\} = \{2, 1\}$ is chosen, $M_1 + M_2 = 1 + 0 = 1$.


Sample Input 2

13

Sample Output 2

78

Sample Input 3

1

Sample Output 3

0

Input

题意翻译

## 题目描述: 对于整数 _N_ ,选择对{1,2,…,_N_}进行\ 排序后的数列{_P_[1],_P_[2],…, _P_[_n_]}。\ 然后,关于各i=1,2,…,_N_,将 _i_ ÷ _P_[_i_]后的余数为 _M_[_i_]。\ 求 _M_[1]+ _M_[2]+…+_M_[_N_]的最大值。 ### 输入格式: 一行,_N_ ### 输出格式: 一行,_M_[1]+ _M_[2]+…+_M_[_N_]的最大值。否则什么也不输出。

加入题单

上一题 下一题 算法标签: