101522: [AtCoder]ABC152 C - Low Elements

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

Given is a permutation $P_1, \ldots, P_N$ of $1, \ldots, N$. Find the number of integers $i$ $(1 \leq i \leq N)$ that satisfy the following condition:

  • For any integer $j$ $(1 \leq j \leq i)$, $P_i \leq P_j$.

Constraints

  • $1 \leq N \leq 2 \times 10^5$
  • $P_1, \ldots, P_N$ is a permutation of $1, \ldots, N$.
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$P_1$ $...$ $P_N$

Output

Print the number of integers $i$ that satisfy the condition.


Sample Input 1

5
4 2 5 1 3

Sample Output 1

3

$i=1$, $2$, and $4$ satisfy the condition, but $i=3$ does not - for example, $P_i > P_j$ holds for $j = 1$.
Similarly, $i=5$ does not satisfy the condition, either. Thus, there are three integers that satisfy the condition.


Sample Input 2

4
4 3 2 1

Sample Output 2

4

All integers $i$ $(1 \leq i \leq N)$ satisfy the condition.


Sample Input 3

6
1 2 3 4 5 6

Sample Output 3

1

Only $i=1$ satisfies the condition.


Sample Input 4

8
5 7 4 2 6 8 1 3

Sample Output 4

4

Sample Input 5

1
1

Sample Output 5

1

Input

题意翻译

给定一个排列 $(P_1,\ldots,P_N)$ 为 $1,\ldots,N$ 。找出满足以下条件的整数 $i(1 \leq i \leq N)$ 的数目: - 对于任意整数 $j(1 \leq j \leq i)$,$P_i \leq P_j$。

加入题单

上一题 下一题 算法标签: