101590: [AtCoder]ABC159 A - The Number of Even Pairs

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $100$ points

Problem Statement

We have $N+M$ balls, each of which has an integer written on it.
It is known that:

  • The numbers written on $N$ of the balls are even.
  • The numbers written on $M$ of the balls are odd.

Find the number of ways to choose two of the $N+M$ balls (disregarding order) so that the sum of the numbers written on them is even.
It can be shown that this count does not depend on the actual values written on the balls.

Constraints

  • $0 \leq N,M \leq 100$
  • $2 \leq N+M$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$

Output

Print the answer.


Sample Input 1

2 1

Sample Output 1

1

For example, let us assume that the numbers written on the three balls are $1,2,4$.

  • If we choose the two balls with $1$ and $2$, the sum is odd;
  • If we choose the two balls with $1$ and $4$, the sum is odd;
  • If we choose the two balls with $2$ and $4$, the sum is even.

Thus, the answer is $1$.


Sample Input 2

4 3

Sample Output 2

9

Sample Input 3

1 1

Sample Output 3

0

Sample Input 4

13 3

Sample Output 4

81

Sample Input 5

0 3

Sample Output 5

3

Input

题意翻译

## 题目描述 有 $N+M$ 个球,每个球上有写有一个整数。 满足: - 其中有 $N$ 个球上的数字是偶数。 - 其中有 $M$ 个球上的数字是奇数。 找出有多少种方式从这 $N+M$ 个球中选出两个球(不计顺序)使得它们的和是偶数。 可以肯定的是这个答案和球上的数的真实值无关。 ## 输入格式 标准输入。 共一行,两个整数 $N$ 和 $M$。 ## 输出格式 输出答案 ## 数据范围 - $0 \leq N,M \leq 100$ - $2 \leq N+M$ - 所有的数都是整数

加入题单

上一题 下一题 算法标签: