101624: [AtCoder]ABC162 E - Sum of gcd of Tuples (Hard)
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $500$ points
Problem Statement
Consider sequences $\{A_1,...,A_N\}$ of length $N$ consisting of integers between $1$ and $K$ (inclusive).
There are $K^N$ such sequences. Find the sum of $\gcd(A_1, ..., A_N)$ over all of them.
Since this sum can be enormous, print the value modulo $(10^9+7)$.
Here $\gcd(A_1, ..., A_N)$ denotes the greatest common divisor of $A_1, ..., A_N$.
Constraints
- $2 \leq N \leq 10^5$
- $1 \leq K \leq 10^5$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $K$
Output
Print the sum of $\gcd(A_1, ..., A_N)$ over all $K^N$ sequences, modulo $(10^9+7)$.
Sample Input 1
3 2
Sample Output 1
9
$\gcd(1,1,1)+\gcd(1,1,2)+\gcd(1,2,1)+\gcd(1,2,2)$ $+\gcd(2,1,1)+\gcd(2,1,2)+\gcd(2,2,1)+\gcd(2,2,2)$ $=1+1+1+1+1+1+1+2=9$
Thus, the answer is $9$.
Sample Input 2
3 200
Sample Output 2
10813692
Sample Input 3
100000 100000
Sample Output 3
742202979
Be sure to print the sum modulo $(10^9+7)$.