101634: [AtCoder]ABC163 E - Active Infants

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

There are $N$ children standing in a line from left to right. The activeness of the $i$-th child from the left is $A_i$.

You can rearrange these children just one time in any order you like.

When a child who originally occupies the $x$-th position from the left in the line moves to the $y$-th position from the left, that child earns $A_x \times |x-y|$ happiness points.

Find the maximum total happiness points the children can earn.

Constraints

  • $2 \leq N \leq 2000$
  • $1 \leq A_i \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $...$ $A_N$

Output

Print the maximum total happiness points the children can earn.


Sample Input 1

4
1 3 4 2

Sample Output 1

20

If we move the $1$-st child from the left to the $3$-rd position from the left, the $2$-nd child to the $4$-th position, the $3$-rd child to the $1$-st position, and the $4$-th child to the $2$-nd position, the children earns $1 \times |1-3|+3 \times |2-4|+4 \times |3-1|+2 \times |4-2|=20$ happiness points in total.


Sample Input 2

6
5 5 6 1 1 1

Sample Output 2

58

Sample Input 3

6
8 6 9 1 2 1

Sample Output 3

85

Input

题意翻译

给定$n$个数,现在要将其重排。 如果$a_i$于重排前在第$i$个位置,现在移动到了第$j$个位置,那么对答案的贡献就是$|j-i|×a_i$ 。 现在,你需要让答案尽可能大。

加入题单

上一题 下一题 算法标签: