101685: [AtCoder]ABC168 F - . (Single Dot)

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score: $600$ points

Problem Statement

There is a grass field that stretches infinitely.

In this field, there is a negligibly small cow. Let $(x, y)$ denote the point that is $x\ \mathrm{cm}$ south and $y\ \mathrm{cm}$ east of the point where the cow stands now. The cow itself is standing at $(0, 0)$.

There are also $N$ north-south lines and $M$ east-west lines drawn on the field. The $i$-th north-south line is the segment connecting the points $(A_i, C_i)$ and $(B_i, C_i)$, and the $j$-th east-west line is the segment connecting the points $(D_j, E_j)$ and $(D_j, F_j)$.

What is the area of the region the cow can reach when it can move around as long as it does not cross the segments (including the endpoints)? If this area is infinite, print INF instead.

Constraints

  • All values in input are integers between $-10^9$ and $10^9$ (inclusive).
  • $1 \leq N, M \leq 1000$
  • $A_i < B_i\ (1 \leq i \leq N)$
  • $E_j < F_j\ (1 \leq j \leq M)$
  • The point $(0, 0)$ does not lie on any of the given segments.

Input

Input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $B_1$ $C_1$
$:$
$A_N$ $B_N$ $C_N$
$D_1$ $E_1$ $F_1$
$:$
$D_M$ $E_M$ $F_M$

Output

If the area of the region the cow can reach is infinite, print INF; otherwise, print an integer representing the area in $\mathrm{cm^2}$.

(Under the constraints, it can be proved that the area of the region is always an integer if it is not infinite.)


Sample Input 1

5 6
1 2 0
0 1 1
0 2 2
-3 4 -1
-2 6 3
1 0 1
0 1 2
2 0 2
-1 -4 5
3 -2 4
1 2 4

Sample Output 1

13

The area of the region the cow can reach is $13\ \mathrm{cm^2}$.

Sample 1


Sample Input 2

6 1
-3 -1 -2
-3 -1 1
-2 -1 2
1 4 -2
1 4 -1
1 4 1
3 1 4

Sample Output 2

INF

The area of the region the cow can reach is infinite.

Input

题意翻译

有一片无限延伸的草地。 在这片田地里,有一头可以忽略不计的小母牛。设 $(x,y)$ 表示牛现在站立的点以南x厘米和以东y厘米的点。奶牛本身正站在 $(0,0)$ 处。 现场还绘制了 $N$ 条南北线和 $M$ 条东西线。第 $i$ 条南北线是连接点 $(A_i,C_i)$ 和 $(B_i,C_i)$ ,并且第 $j$ 条东西线是连接点 $(D_j,E_j)$ 和 $(D_j,F_j)$ 的线段。 只要奶牛不穿过线段(包括端点),它就可以四处移动,那么它可以到达的区域面积是多少?如果这个区域是无限的,请打印`INF`。

加入题单

上一题 下一题 算法标签: