101703: [AtCoder]ABC170 D - Not Divisible
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
Given is a number sequence $A$ of length $N$.
Find the number of integers $i$ $\left(1 \leq i \leq N\right)$ with the following property:
- For every integer $j$ $\left(1 \leq j \leq N\right)$ such that $i \neq j $, $A_j$ does not divide $A_i$.
Constraints
- All values in input are integers.
- $1 \leq N \leq 2 \times 10^5$
- $1 \leq A_i \leq 10^6$
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\cdots$ $A_N$
Output
Print the answer.
Sample Input 1
5 24 11 8 3 16
Sample Output 1
3
The integers with the property are $2$, $3$, and $4$.
Sample Input 2
4 5 5 5 5
Sample Output 2
0
Note that there can be multiple equal numbers.
Sample Input 3
10 33 18 45 28 8 19 89 86 2 4
Sample Output 3
5