101703: [AtCoder]ABC170 D - Not Divisible

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

Given is a number sequence $A$ of length $N$.

Find the number of integers $i$ $\left(1 \leq i \leq N\right)$ with the following property:

  • For every integer $j$ $\left(1 \leq j \leq N\right)$ such that $i \neq j $, $A_j$ does not divide $A_i$.

Constraints

  • All values in input are integers.
  • $1 \leq N \leq 2 \times 10^5$
  • $1 \leq A_i \leq 10^6$

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $A_2$ $\cdots$ $A_N$

Output

Print the answer.


Sample Input 1

5
24 11 8 3 16

Sample Output 1

3

The integers with the property are $2$, $3$, and $4$.


Sample Input 2

4
5 5 5 5

Sample Output 2

0

Note that there can be multiple equal numbers.


Sample Input 3

10
33 18 45 28 8 19 89 86 2 4

Sample Output 3

5

Input

题意翻译

给定长度为 $N$ 的数列 $A$。 请找出满足以下条件的整数 $i$ ($1 \leq i \leq N$) 的数量: - 对于任意整数 $j$ ($1 \leq j \leq N$),满足 $i \neq j$ 时,$A_i$ 不能被 $A_j$ 整除。

加入题单

上一题 下一题 算法标签: