101723: [AtCoder]ABC172 D - Sum of Divisors

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

For a positive integer $X$, let $f(X)$ be the number of positive divisors of $X$.

Given a positive integer $N$, find $\sum_{K=1}^N K\times f(K)$.

Constraints

  • $1 \leq N \leq 10^7$

Input

Input is given from Standard Input in the following format:

$N$

Output

Print the value $\sum_{K=1}^N K\times f(K)$.


Sample Input 1

4

Sample Output 1

23

We have $f(1)=1$, $f(2)=2$, $f(3)=2$, and $f(4)=3$, so the answer is $1\times 1 + 2\times 2 + 3\times 2 + 4\times 3 =23$.


Sample Input 2

100

Sample Output 2

26879

Sample Input 3

10000000

Sample Output 3

838627288460105

Watch out for overflows.

Input

题意翻译

### 题意翻译 - $f(x)$ 表示正整数 $x$ 的因数个数 - 现在给你一个正整数 $ N $ ,让你求出 $ \sum_{K=1}^N\ K\times\ f(K) $ 。 ---------- ### 输入格式 - 共一行,第一行输入一个正整数 $N$ ,定义见题目描述 ------------- ### 输出格式 - 共一行,输出 $ \sum_{K=1}^N\ K\times\ f(K) $ 的结果 - 最后别忘了输出回车 ### 说明/提示 - $ 1\ \leq\ N\ \leq\ 10^7 $ ### 样例1说明: - $f(1)=1 $ , $ f(2)=2 $ , $ f(3)=2 $ , $ f(4)=3 $ , 所以答案为 $ 1\times\ 1\ +\ 2\times\ 2\ +\ 3\times\ 2\ +\ 4\times\ 3\ =23 $ 。 _Translated by qinmingze_

加入题单

上一题 下一题 算法标签: