101751: [AtCoder]ABC175 B - Making Triangle

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:8 Solved:0

Description

Score : $200$ points

Problem Statement

We have sticks numbered $1, \cdots, N$. The length of Stick $i$ $(1 \leq i \leq N)$ is $L_i$.

In how many ways can we choose three of the sticks with different lengths that can form a triangle?

That is, find the number of triples of integers $(i, j, k)$ $(1 \leq i < j < k \leq N)$ that satisfy both of the following conditions:

  • $L_i$, $L_j$, and $L_k$ are all different.
  • There exists a triangle whose sides have lengths $L_i$, $L_j$, and $L_k$.

Constraints

  • $1 \leq N \leq 100$
  • $1 \leq L_i \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$L_1$ $L_2$ $\cdots$ $L_N$

Output

Print the number of ways to choose three of the sticks with different lengths that can form a triangle.


Sample Input 1

5
4 4 9 7 5

Sample Output 1

5

The following five triples $(i, j, k)$ satisfy the conditions: $(1, 3, 4)$, $(1, 4, 5)$, $(2, 3, 4)$, $(2, 4, 5)$, and $(3, 4, 5)$.


Sample Input 2

6
4 5 4 3 3 5

Sample Output 2

8

We have two sticks for each of the lengths $3$, $4$, and $5$. To satisfy the first condition, we have to choose one from each length.

There is a triangle whose sides have lengths $3$, $4$, and $5$, so we have $2 ^ 3 = 8$ triples $(i, j, k)$ that satisfy the conditions.


Sample Input 3

10
9 4 6 1 9 6 10 6 6 8

Sample Output 3

39

Sample Input 4

2
1 1

Sample Output 4

0

No triple $(i, j, k)$ satisfies $1 \leq i < j < k \leq N$, so we should print $0$.

Input

题意翻译

### 题目描述 给定一个长度为 $N$ 的序列,代表每根木棍的长度。 问有多少中方法使得三根长度不同的木棍拼成一个三角形? ### 输入格式 第一行一个正整数 $N$ ,表示木棍的数量。 第二行 $N$ 个正整数,表示每根木棍的长度 $L_i$ 。 ### 输出格式 一行一个正整数,表示拼成三角形的方法数。 ### 说明/提示 $1 \le N \le 100$. $1 \le L_i \le 10^9$ translate by [ChrisWangZi](https://www.luogu.com.cn/user/637180)

加入题单

上一题 下一题 算法标签: