101755: [AtCoder]ABC175 F - Making Palindrome

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

We have $N$ strings of lowercase English letters: $S_1, S_2, \cdots, S_N$.

Takahashi wants to make a string that is a palindrome by choosing one or more of these strings - the same string can be chosen more than once - and concatenating them in some order of his choice.

The cost of using the string $S_i$ once is $C_i$, and the cost of using it multiple times is $C_i$ multiplied by that number of times.

Find the minimum total cost needed to choose strings so that Takahashi can make a palindrome.

If there is no choice of strings in which he can make a palindrome, print $-1$.

Constraints

  • $1 \leq N \leq 50$
  • $1 \leq |S_i| \leq 20$
  • $S_i$ consists of lowercase English letters.
  • $1 \leq C_i \leq 10^9$

Input

Input is given from Standard Input in the following format:

$N$
$S_1$ $C_1$
$S_2$ $C_2$
$:$
$S_N$ $C_N$

Output

Print the minimum total cost needed to choose strings so that Takahashi can make a palindrome, or $-1$ if there is no such choice.


Sample Input 1

3
ba 3
abc 4
cbaa 5

Sample Output 1

7

We have ba, abc, and cbaa.

For example, we can use ba once and abc once for a cost of $7$, then concatenate them in the order abc, ba to make a palindrome. Also, we can use abc once and cbaa once for a cost of $9$, then concatenate them in the order cbaa, abc to make a palindrome.

We cannot make a palindrome for a cost less than $7$, so we should print $7$.


Sample Input 2

2
abcab 5
cba 3

Sample Output 2

11

We can choose abcab once and cba twice, then concatenate them in the order abcab, cba, cba to make a palindrome for a cost of $11$.


Sample Input 3

4
ab 5
cba 3
a 12
ab 10

Sample Output 3

8

We can choose a once, which is already a palindrome, but it is cheaper to concatenate ab and cba.


Sample Input 4

2
abc 1
ab 2

Sample Output 4

-1

We cannot make a palindrome, so we should print $-1$.

Input

题意翻译

### 题目大意 有 $N$ 个仅含小写字母的字符串 $S_1,S_2,\cdots,S_N$。你需要把从这些字符串中选择一些以任意顺序拼接起来,同一个字符串可以被选择多次。每选择一次 $S_i$,你都需要花费 $C_i$ 的代价,也就是说你选择 $S_i$ 所花费的代价为 $C_i$ 与 $S_i$ 被选择的次数之积。求使拼接得到的字符串为回文串所需的最小花费。若不管如何都无法拼接成回文串,输出 `-1`。 数据范围:$1 \le N \le 50$,$1 \le |S_i| \le 20$,$1 \le C_i \le 10^9$。 ### 输入格式 第一行一个整数 $N$,接下来 $N$ 行每行一个字符串 $S_i$ 和一个整数 $C_i$。 ### 输出格式 一个整数,为最小代价或 `-1`。 ### 样例解释 样例 1:我们可以分别选择一次 `abc` 与 `ba`,拼接得到回文串 `abcba`,花费为 $(3+4=7)$,为最小值。 样例 2:选择一次 `abcab`,两次 `cba`,拼接得到回文串 `abcabcbacba`,花费为 $(5+3\times2=11)$,为最小值。 样例 3:选择 `ab` 与 `cba` 花费的代价比仅选择 `a` 更少。 样例 4:无法拼成回文串。 (翻译 by @CarroT1212)

加入题单

上一题 下一题 算法标签: