101763: [AtCoder]ABC176 D - Wizard in Maze

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $400$ points

Problem Statement

A maze is composed of a grid of $H \times W$ squares - $H$ vertical, $W$ horizontal.

The square at the $i$-th row from the top and the $j$-th column from the left - $(i,j)$ - is a wall if $S_{ij}$ is # and a road if $S_{ij}$ is ..

There is a magician in $(C_h,C_w)$. He can do the following two kinds of moves:

  • Move A: Walk to a road square that is vertically or horizontally adjacent to the square he is currently in.
  • Move B: Use magic to warp himself to a road square in the $5\times 5$ area centered at the square he is currently in.

In either case, he cannot go out of the maze.

At least how many times does he need to use the magic to reach $(D_h, D_w)$?

Constraints

  • $1 \leq H,W \leq 10^3$
  • $1 \leq C_h,D_h \leq H$
  • $1 \leq C_w,D_w \leq W$
  • $S_{ij}$ is # or ..
  • $S_{C_h C_w}$ and $S_{D_h D_w}$ are ..
  • $(C_h,C_w) \neq (D_h,D_w)$

Input

Input is given from Standard Input in the following format:

$H$ $W$
$C_h$ $C_w$
$D_h$ $D_w$
$S_{11}\ldots S_{1W}$
$\vdots$
$S_{H1}\ldots S_{HW}$

Output

Print the minimum number of times the magician needs to use the magic. If he cannot reach $(D_h,D_w)$, print -1 instead.


Sample Input 1

4 4
1 1
4 4
..#.
..#.
.#..
.#..

Sample Output 1

1

For example, by walking to $(2,2)$ and then using the magic to travel to $(4,4)$, just one use of magic is enough.

Note that he cannot walk diagonally.


Sample Input 2

4 4
1 4
4 1
.##.
####
####
.##.

Sample Output 2

-1

He cannot move from there.


Sample Input 3

4 4
2 2
3 3
....
....
....
....

Sample Output 3

0

No use of magic is needed.


Sample Input 4

4 5
1 2
2 5
#.###
####.
#..##
#..##

Sample Output 4

2

Input

题意翻译

- 给定一个迷宫,由 $H$ 行 $W$ 列字符组成,$\texttt{.}$ 可以走,$\texttt{\#}$ 不可以走。 - 有一个人在坐标 $(S_c,S_r)$ 中,每一次他可以向上、下、左、右移动一次。 - 他还可以使用魔法,即直接移动到以他现在的位置为中心的 $5\times 5$ 的正方形中的任意位置。 - 输出这一个人最少使用几次魔法才能到位置 $(E_c,E_r)$。

加入题单

上一题 下一题 算法标签: