101772: [AtCoder]ABC177 C - Sum of product of pairs

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $300$ points

Problem Statement

Given are $N$ integers $A_1,\ldots,A_N$.

Find the sum of $A_i \times A_j$ over all pairs $(i,j)$ such that $1\leq i < j \leq N$, modulo $(10^9+7)$.

Constraints

  • $2 \leq N \leq 2\times 10^5$
  • $0 \leq A_i \leq 10^9$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$A_1$ $\ldots$ $A_N$

Output

Print $\sum_{i=1}^{N-1}\sum_{j=i+1}^{N} A_i A_j$, modulo $(10^9+7)$.


Sample Input 1

3
1 2 3

Sample Output 1

11

We have $1 \times 2 + 1 \times 3 + 2 \times 3 = 11$.


Sample Input 2

4
141421356 17320508 22360679 244949

Sample Output 2

437235829

Input

题意翻译

给定 $N$ 个整数 $A_1,...,A_n$,求出 $ \sum_{i=1}^{n-1}{\sum_{j=i+1}^{n}{a_i\times a_j}} $的值。 答案对 $10^9+7$ 取模。

加入题单

上一题 下一题 算法标签: