101801: [AtCoder]ABC180 B - Various distances

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $200$ points

Problem Statement

Given is a point $(x_1,\ldots,x_N)$ in an $N$-dimensional space.

Find the Manhattan distance, Euclidian distance, and Chebyshev distance between this point and the origin. Here, each of them is defined as follows:

  • The Manhattan distance: $|x_1|+\ldots+|x_N|$
  • The Euclidian distance: $\sqrt{|x_1|^2+\ldots+|x_N|^2}$
  • The Chebyshev distance: $\max(|x_1|,\ldots,|x_N|)$

Constraints

  • $1 \leq N \leq 10^5$
  • $-10^5 \leq x_i \leq 10^5$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$x_1$ $\ldots$ $x_N$

Output

Print the Manhattan distance, Euclidian distance, and Chebyshev distance between the given point and the origin, each in its own line. Each value in your print will be accepted when its absolute or relative error from the correct value is at most $10^{-9}$.


Sample Input 1

2
2 -1

Sample Output 1

3
2.236067977499790
2

Each of the distances is computed as follows:

  • The Manhattan distance: $|2|+|-1|=3$
  • The Euclidian distance: $\sqrt{|2|^2+|-1|^2}=2.236067977499789696\ldots$
  • The Chebyshev distance: $\max(|2|,|-1|)=2$

Sample Input 2

10
3 -1 -4 1 -5 9 2 -6 5 -3

Sample Output 2

39
14.387494569938159
9

Input

题意翻译

给定一个数组,求出三个数: 1、$\lvert x_1 \rvert + \lvert x_2 \rvert + ... + \lvert x_n \rvert$ 2、$\sqrt{\lvert x_1 \rvert^2 + \lvert x_2 \rvert^2 + ... + \lvert x_n \rvert^2}$ 3、$max (\lvert x_1 \rvert , \lvert x_2 \rvert , ... , \lvert x_n \rvert)$ 允许有不大于 $10^{-5}$ 的误差。 translate by [ChrisWangZi](https://www.luogu.com.cn/user/637180)

加入题单

上一题 下一题 算法标签: