101812: [AtCoder]ABC181 C - Collinearity
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
We have $N$ points on a two-dimensional infinite coordinate plane.
The $i$-th point is at $(x_i,y_i)$.
Is there a triple of distinct points lying on the same line among the $N$ points?
Constraints
- All values in input are integers.
- $3 \leq N \leq 10^2$
- $|x_i|, |y_i| \leq 10^3$
- If $i \neq j$, $(x_i, y_i) \neq (x_j, y_j)$.
Input
Input is given from Standard Input in the following format:
$N$ $x_1$ $y_1$ $\vdots$ $x_N$ $y_N$
Output
If there is a triple of distinct points lying on the same line, print Yes
; otherwise, print No
.
Sample Input 1
4 0 1 0 2 0 3 1 1
Sample Output 1
Yes
The three points $(0, 1), (0, 2), (0, 3)$ lie on the line $x = 0$.
Sample Input 2
14 5 5 0 1 2 5 8 0 2 1 0 0 3 6 8 6 5 9 7 9 3 4 9 2 9 8 7 2
Sample Output 2
No
Sample Input 3
9 8 2 2 3 1 3 3 7 1 0 8 8 5 6 9 7 0 1
Sample Output 3
Yes