101905: [AtCoder]ABC190 F - Shift and Inversions

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:6 Solved:0

Description

Score : $600$ points

Problem Statement

Given is a sequence $A = [a_0, a_1, a_2, \dots, a_{N-1}]$ that is a permutation of $0, 1, 2, \dots, N - 1$.
For each $k = 0, 1, 2, \dots, N - 1$, find the inversion number of the sequence $B = [b_0, b_1, b_2, \dots, b_{N-1}]$ defined as $b_i = a_{i+k \bmod N}$.

What is inversion number? The inversion number of a sequence $A = [a_0, a_1, a_2, \dots, a_{N-1}]$ is the number of pairs of indices $(i, j)$ such that $i < j$ and $a_i > a_j$.

Constraints

  • All values in input are integers.
  • $2 ≤ N ≤ 3 \times 10^5$
  • $a_0, a_1, a_2, \dots, a_{N-1}$ is a permutation of $0, 1, 2, \dots, N - 1$.

Input

Input is given from Standard Input in the following format:

$N$
$a_0$ $a_1$ $a_2$ $\cdots$ $a_{N-1}$

Output

Print $N$ lines.
The $(i + 1)$-th line should contain the answer for the case $k = i$.


Sample Input 1

4
0 1 2 3

Sample Output 1

0
3
4
3

We have $A = [0, 1, 2, 3]$.

For $k = 0$, the inversion number of $B = [0, 1, 2, 3]$ is $0$.
For $k = 1$, the inversion number of $B = [1, 2, 3, 0]$ is $3$.
For $k = 2$, the inversion number of $B = [2, 3, 0, 1]$ is $4$.
For $k = 3$, the inversion number of $B = [3, 0, 1, 2]$ is $3$.


Sample Input 2

10
0 3 1 5 4 2 9 6 8 7

Sample Output 2

9
18
21
28
27
28
33
24
21
14

Input

题意翻译

$n$ 个 $0$ 到 $n$ $-$ $1$ 全排列的数组,然后这个数组会循环左移 $n$ $-$ $1$, 求这个过程中数组的逆序数对是多少?

加入题单

上一题 下一题 算法标签: