101990: [AtCoder]ABC199 A - Square Inequality

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:1 Solved:0

Description

Score : $100$ points

Problem Statement

You are given integers $A$, $B$, and $C$.
Determine whether $A^2 + B^2 < C^2$ holds.

Constraints

  • $0 \le A \le 1000$
  • $0 \le B \le 1000$
  • $0 \le C \le 1000$
  • $A$, $B$, and $C$ are integers.

Input

Input is given from Standard Input in the following format:

$A$ $B$ $C$

Output

If $A^2 + B^2 < C^2$ holds, print Yes; otherwise, print No.


Sample Input 1

2 2 4

Sample Output 1

Yes

Since $A^2 + B^2 = 2^2 + 2^2 = 8$ and $C^2 = 4^2 = 16$, we have $A^2 + B^2 < C^2$, so we should print Yes.


Sample Input 2

10 10 10

Sample Output 2

No

Since $A^2 + B^2 = 200$ and $C^2 = 100$, $A^2 + B^2 < C^2$ does not hold.


Sample Input 3

3 4 5

Sample Output 3

No

Input

题意翻译

输入三个非负整数 $a,b,c$ ,判断 $a^2+b^2<c^2$ 是否成立。

加入题单

上一题 下一题 算法标签: