101990: [AtCoder]ABC199 A - Square Inequality
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:1
Solved:0
Description
Score : $100$ points
Problem Statement
You are given integers $A$, $B$, and $C$.
Determine whether $A^2 + B^2 < C^2$ holds.
Constraints
- $0 \le A \le 1000$
- $0 \le B \le 1000$
- $0 \le C \le 1000$
- $A$, $B$, and $C$ are integers.
Input
Input is given from Standard Input in the following format:
$A$ $B$ $C$
Output
If $A^2 + B^2 < C^2$ holds, print Yes
; otherwise, print No
.
Sample Input 1
2 2 4
Sample Output 1
Yes
Since $A^2 + B^2 = 2^2 + 2^2 = 8$ and $C^2 = 4^2 = 16$, we have $A^2 + B^2 < C^2$, so we should print Yes
.
Sample Input 2
10 10 10
Sample Output 2
No
Since $A^2 + B^2 = 200$ and $C^2 = 100$, $A^2 + B^2 < C^2$ does not hold.
Sample Input 3
3 4 5
Sample Output 3
No