102022: [AtCoder]ABC202 C - Made Up
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $300$ points
Problem Statement
Given are three sequences of length $N$ each: $A = (A_1, A_2, \dots, A_N)$, $B = (B_1, B_2, \dots, B_N)$, and $C = (C_1, C_2, \dots, C_N)$, consisting of integers between $1$ and $N$ (inclusive).
How many pairs $(i, j)$ of integers between $1$ and $N$ (inclusive) satisfy $A_i = B_{C_j}$?
Constraints
- $1 \leq N \leq 10^5$
- $1 \leq A_i, B_i, C_i \leq N$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $A_2$ $\ldots$ $A_N$ $B_1$ $B_2$ $\ldots$ $B_N$ $C_1$ $C_2$ $\ldots$ $C_N$
Output
Print the number of pairs $(i, j)$ such that $A_i = B_{C_j}$.
Sample Input 1
3 1 2 2 3 1 2 2 3 2
Sample Output 1
4
Four pairs satisfy the condition: $(1, 1), (1, 3), (2, 2), (3, 2)$.
Sample Input 2
4 1 1 1 1 1 1 1 1 1 2 3 4
Sample Output 2
16
All the pairs satisfy the condition.
Sample Input 3
3 2 3 3 1 3 3 1 1 1
Sample Output 3
0
No pair satisfies the condition.