102024: [AtCoder]ABC202 E - Count Descendants

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $500$ points

Problem Statement

We have a rooted tree with $N$ vertices, numbered $1, 2, \dots, N$.

Vertex $1$ is the root, and the parent of Vertex $i \, (2 \leq i \leq N)$ is Vertex $P_i$.

You are given $Q$ queries. In the $i$-th query $(1 \leq i \leq Q)$, given integers $U_i$ and $D_i$, find the number of vertices $u$ that satisfy all of the following conditions:

  • Vertex $U_i$ is in the shortest path from $u$ to the root (including the endpoints).
  • There are exactly $D_i$ edges in the shortest path from $u$ to the root.

Constraints

  • $2 \leq N \leq 2 \times 10^5$
  • $1 \leq P_i < i$
  • $1 \leq Q \leq 2 \times 10^5$
  • $1 \leq U_i \leq N$
  • $0 \leq D_i \leq N - 1$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$
$P_2$ $P_3$ $\ldots$ $P_N$
$Q$
$U_1$ $D_1$
$U_2$ $D_2$
$\vdots$
$U_Q$ $D_Q$

Output

Print $Q$ lines. The $i$-th line should contain the response to the $i$-th query.


Sample Input 1

7
1 1 2 2 4 2
4
1 2
7 2
4 1
5 5

Sample Output 1

3
1
0
0

In the $1$-st query, Vertices $4$, $5$, and $7$ satisfy the conditions. In the $2$-nd query, only Vertices $7$ satisfies the conditions. In the $3$-rd and $4$-th queries, no vertice satisfies the conditions.

sample

Input

题意翻译

- 给出一个 $n$ 个点的有根树,节点编号为 $1, 2, \cdots n$,树根为 $1$,第 $i$($2 \le i \le n$)号节点的父亲是 $p_i$。 - 给出 $q$ 个查询,第 $i$ 个查询包含 $a_i, b_i$,计算满足以下条件的点 $u$ 的个数: 1. $a_i$ 位于 $u$ 到 $1$ 的最短路径上(端点也算); 2. $u$ 到根上的路径恰好有 $b_i$ 条边。 - $n, q \le 2 \times 10^5, 0 \le b_i < n$。

加入题单

上一题 下一题 算法标签: