102085: [AtCoder]ABC208 F - Cumulative Sum

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

For non-negative integers $n$ and $m$, let us define the function $f(n, m)$ as follows, using a positive integer $K$.

$\displaystyle f(n, m) = \begin{cases} 0 & (n = 0) \\ n^K & (n \gt 0, m = 0) \\ f(n-1, m) + f(n, m-1) & (n \gt 0, m \gt 0) \end{cases}$

Given $N$, $M$, and $K$, find $f(N, M)$ modulo $(10 ^ 9 + 7)$.

Constraints

  • $0 \leq N \leq 10^{18}$
  • $0 \leq M \leq 30$
  • $1 \leq K \leq 2.5 \times 10^6$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$ $K$

Output

Print $f(N, M)$ modulo $(10 ^ 9 + 7)$.


Sample Input 1

3 4 2

Sample Output 1

35

When $K = 2$, the values $f(n, m)$ for $n \leq 3, m \leq 4$ are as follows.

$m = 0$ $m = 1$ $m = 2$ $m = 3$ $m = 4$
$n = 0$ $0$ $0$ $0$ $0$ $0$
$n = 1$ $1$ $1$ $1$ $1$ $1$
$n = 2$ $4$ $5$ $6$ $7$ $8$
$n = 3$ $9$ $14$ $20$ $27$ $35$

Sample Input 2

0 1 2

Sample Output 2

0

Sample Input 3

1000000000000000000 30 123456

Sample Output 3

297085514

Input

题意翻译

给定非负整数 $n$,$m$ 和正整数 $k$。 求函数 $ \displaystyle\ f(n,\ m)\ = \begin{cases}\ 0\ &\ (n\ =\ 0)\ \\ n^K\ &\ (n\ \gt\ 0,\ m\ =\ 0)\ \\ f(n-1,\ m)\ +\ f(n,\ m-1)\ \ &\ (n\ \gt\ 0,\ m\ \gt\ 0)\ \end{cases} $ 对 $\left(10^9+7\right)$ 取模后的值。

加入题单

上一题 下一题 算法标签: