102130: [AtCoder]ABC213 A - Bitwise Exclusive Or
Description
Score : $100$ points
Problem Statement
You are given integers $A$ and $B$ between $0$ and $255$ (inclusive). Find a non-negative integer $C$ such that $A \text{ xor }C=B$.
It can be proved that there uniquely exists such $C$, and it will be between $0$ and $255$ (inclusive).
What is bitwise $\mathrm{XOR}$?
The bitwise $\mathrm{XOR}$ of integers $A$ and $B$, $A\ \mathrm{XOR}\ B$, is defined as follows:
- When $A\ \mathrm{XOR}\ B$ is written in base two, the digit in the $2^k$'s place ($k \geq 0$) is $1$ if exactly one of $A$ and $B$ is $1$, and $0$ otherwise.
Constraints
- $0\leq A,B \leq 255$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$A$ $B$
Output
Print the answer.
Sample Input 1
3 6
Sample Output 1
5
When written in binary, $3$ will be $11$, and $5$ will be $101$. Thus, their $\text{xor}$ will be $110$ in binary, or $6$ in decimal.
In short, $3 \text{ xor } 5 = 6$, so the answer is $5$.
Sample Input 2
10 12
Sample Output 2
6
Input
题意翻译
对 $a,b$ 两个非负整数执行异或位运算并输出其结果。Output
分数:100分
问题描述
给你两个介于0和255(含)之间的整数A和B。找出一个非负整数C,使得A异或C=B。
可以证明存在一个这样的C,且C介于0和255(含)之间。
什么是按位异或?
整数A和B的按位异或A 异或 B,表示为$A\ \mathrm{XOR}\ B$,定义如下:
- 当$A\ \mathrm{XOR}\ B$以二进制表示时,第$2^k$位($k \geq 0$)为1,如果A和B中恰好有一个为1,否则为0。
约束
- $0\leq A,B \leq 255$
- 输入中的所有值都是整数。
输入
从标准输入给出以下格式的输入:
$A$ $B$
输出
打印答案。
样例输入1
3 6
样例输出1
5
当以二进制表示时,3为11,5为101。因此,它们的异或为二进制的110,即十进制的6。
简而言之,$3 \text{ xor } 5 = 6$,所以答案是5。
样例输入2
10 12
样例输出2
6