102213: [AtCoder]ABC221 D - Online games
Description
Score : $400$ points
Problem Statement
There is an online game with $N$ registered players.
Today, which is the $10^{100}$-th day since its launch, the developer Takahashi examined the users' login history. It turned out that the $i$-th player logged in for $B_i$ consecutive days from Day $A_i$, where Day $1$ is the launch day, and did not log in for the other days.
In other words, the $i$-th player logged in on Day $A_i$, $A_i+1$, $\ldots$, $A_i+B_i-1$, and only on those days.
For each integer $k$ such that $1\leq k\leq N$, find the number of days on which exactly $k$ players logged in.
Constraints
- $1 \leq N \leq 2\times 10^5$
- $1 \leq A_i \leq 10^9$
- $1 \leq B_i \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $:$ $A_N$ $B_N$
Output
Print $N$ integers with spaces in between, as follows:
$D_1$ $D_2$ $\cdots$ $D_N$
Here, $D_i$ denotes the number of days on which exactly $k$ players logged in.
Sample Input 1
3 1 2 2 3 3 1
Sample Output 1
2 2 0
The first player logged in on Day $1$, $2$, the second player logged in on Day $2$, $3$, $4$, and the third player logged in on Day $3$ only.
Thus, we can see that Day $1$, $4$ had $1$ player logged in, Day $2$, $3$ had $2$ players logged in, and the other days had no players logged in.
The answer is: there were $2$ days with exactly $1$ player logged in, $2$ days with exactly $2$ players logged in, and $0$ days with exactly $3$ players logged in.
Sample Input 2
2 1000000000 1000000000 1000000000 1000000000
Sample Output 2
0 1000000000
There may be two or more players who logged in during the same period.
Input
题意翻译
高桥是一款电子游戏的开发者。 在这款游戏上线 $\inf$ 天后,高桥打开了操作记录,查看了所有 $n$ 个玩家的入坑时间以及总共玩的天数。 现在要,对于每一个整数 $k$ 使 $1\le k\le n$ ,有多少天有**恰好** $k$ 个玩家正在玩这个游戏。Output
得分:400分
问题描述
有一个注册玩家为$N$的在线游戏。今天是该游戏发行的第$10^{100}$天,开发者高桥检查了用户的登录记录。发现第$i$个玩家从第$A_i$天开始连续登录了$B_i$天,其中第1天为发行日,其他日子没有登录。换句话说,第$i$个玩家在第$A_i$天、$A_i+1$天、$\ldots$、$A_i+B_i-1$天登录,仅在这些天登录。
对于满足$1\leq k\leq N$的每个整数$k$,找出恰好有$k$个玩家登录的天数。
限制条件
- $1 \leq N \leq 2\times 10^5$
- $1 \leq A_i \leq 10^9$
- $1 \leq B_i \leq 10^9$
- 输入中的所有值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $:$ $A_N$ $B_N$
输出
以空格分隔的方式打印$N$个整数,如下所示:
$D_1$ $D_2$ $\cdots$ $D_N$
其中$D_i$表示恰好有$k$个玩家登录的天数。
样例输入1
3 1 2 2 3 3 1
样例输出1
2 2 0
第一个玩家在第1天、2天登录,第二个玩家在第2天、3天、4天登录,第三个玩家仅在第3天登录。
因此,我们可以看到第1天、4天有1个玩家登录,第2天、3天有2个玩家登录,其他天数没有玩家登录。
答案是:恰好有1个玩家登录的天数为2天,恰好有2个玩家登录的天数为2天,恰好有3个玩家登录的天数为0天。
样例输入2
2 1000000000 1000000000 1000000000 1000000000
样例输出2
0 1000000000
可能存在两个或多个玩家在同一时间段内登录。