102223: [AtCoder]ABC222 D - Between Two Arrays
Description
Score : $400$ points
Problem Statement
A sequence of $n$ numbers, $S = (s_1, s_2, \dots, s_n)$, is said to be non-decreasing if and only if $s_i \leq s_{i+1}$ holds for every $i$ $(1 \leq i \leq n - 1)$.
Given are non-decreasing sequences of $N$ integers each: $A = (a_1, a_2, \dots, a_N)$ and $B = (b_1, b_2, \dots, b_N)$.
Consider a non-decreasing sequence of $N$ integers, $C = (c_1, c_2, \dots, c_N)$, that satisfies the following condition:
- $a_i \leq c_i \leq b_i$ for every $i$ $(1 \leq i \leq N)$.
Find the number, modulo $998244353$, of sequences that can be $C$.
Constraints
- $1 \leq N \leq 3000$
- $0 \leq a_i \leq b_i \leq 3000$ $(1 \leq i \leq N)$
- The sequences $A$ and $B$ are non-decreasing.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $a_1$ $a_2$ $\dots$ $a_N$ $b_1$ $b_2$ $\dots$ $b_N$
Output
Print the number, modulo $998244353$, of sequences that can be $C$.
Sample Input 1
2 1 1 2 3
Sample Output 1
5
There are five sequences that can be $C$, as follows.
- $(1, 1)$
- $(1, 2)$
- $(1, 3)$
- $(2, 2)$
- $(2, 3)$
Note that $(2, 1)$ does not satisfy the condition since it is not non-decreasing.
Sample Input 2
3 2 2 2 2 2 2
Sample Output 2
1
There is one sequence that can be $C$, as follows.
- $(2, 2, 2)$
Sample Input 3
10 1 2 3 4 5 6 7 8 9 10 1 4 9 16 25 36 49 64 81 100
Sample Output 3
978222082
Be sure to find the count modulo $998244353$.
Input
题意翻译
给定两个单调不下降的序列 $a$,$b$,求单调不下降序列 $c$ ,满足 $a_i\le c_i\le b_i$ 并且最长的数量。对 $998244353$ 取模。 $1\le n\le 3000$,$0\le a_i\le b_i\le 3000$。Output
问题描述
如果满足对于所有的$i$ $(1 \leq i \leq n - 1)$,$s_i \leq s_{i+1}$ 成立,则称一个由$n$个数字组成的序列$S = (s_1, s_2, \dots, s_n)$是非递减的。
给定两个长度为$N$的非递减整数序列:$A = (a_1, a_2, \dots, a_N)$和$B = (b_1, b_2, \dots, b_N)$。
考虑一个长度为$N$的非递减整数序列$C = (c_1, c_2, \dots, c_N)$,它满足以下条件:
- 对于所有的$i$ $(1 \leq i \leq N)$,$a_i \leq c_i \leq b_i$ 成立。
找出可以为$C$的序列的数量,对$998244353$取模。
限制条件
- $1 \leq N \leq 3000$
- $0 \leq a_i \leq b_i \leq 3000$ $(1 \leq i \leq N)$
- 序列$A$和$B$都是非递减的。
- 输入中的所有值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $a_1$ $a_2$ $\dots$ $a_N$ $b_1$ $b_2$ $\dots$ $b_N$
输出
输出可以为$C$的序列的数量,对$998244353$取模。
样例输入1
2 1 1 2 3
样例输出1
5
有五个可以为$C$的序列,如下所示。
- $(1, 1)$
- $(1, 2)$
- $(1, 3)$
- $(2, 2)$
- $(2, 3)$
注意$(2, 1)$不满足条件,因为它不是非递减的。
样例输入2
3 2 2 2 2 2 2
样例输出2
1
有一个可以为$C$的序列,如下所示。
- $(2, 2, 2)$
样例输入3
10 1 2 3 4 5 6 7 8 9 10 1 4 9 16 25 36 49 64 81 100
样例输出3
978222082
确保找到对$998244353$取模的计数。