102244: [AtCoder]ABC224 E - Integers on Grid
Description
Score : $500$ points
Problem Statement
We have a grid with $H$ horizontal rows and $W$ vertical columns. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left.
Each square contains an integer. For each $i = 1, 2, \ldots, N$, the square $(r_i, c_i)$ contains a positive integer $a_i$. The other square contains a $0$.
Initially, there is a piece on the square $(R, C)$. Takahashi can move the piece to a square other than the square it occupies now, any number of times. However, when moving the piece, both of the following conditions must be satisfied.
- The integer written on the square to which the piece is moved is strictly greater than the integer written on the square from which the piece is moved.
- The squares to and from which the piece is moved are in the same row or the same column.
For each $i = 1, 2, \ldots, N$, print the maximum number of times Takahashi can move the piece when $(R, C) = (r_i, c_i)$.
Constraints
- $2 \leq H, W \leq 2 \times 10^5$
- $1 \leq N \leq \min(2 \times 10^5, HW)$
- $1 \leq r_i \leq H$
- $1 \leq c_i \leq W$
- $1 \leq a_i \leq 10^9$
- $i \neq j \Rightarrow (r_i, c_i) \neq (r_j, c_j)$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$H$ $W$ $N$ $r_1$ $c_1$ $a_1$ $r_2$ $c_2$ $a_2$ $\vdots$ $r_N$ $c_N$ $a_N$
Output
Print $N$ lines. For each $i = 1, 2, \ldots, N$, the $i$-th line should contain the maximum number of times Takahashi can move the piece when $(R, C) = (r_i, c_i)$.
Sample Input 1
3 3 7 1 1 4 1 2 7 2 1 3 2 3 5 3 1 2 3 2 5 3 3 5
Sample Output 1
1 0 2 0 3 1 0
The grid contains the following integers.
4 7 0 3 0 5 2 5 5
- When $(R, C) = (r_1, c_1) = (1, 1)$, you can move the piece once by moving it as $(1, 1) \rightarrow (1, 2)$.
- When $(R, C) = (r_2, c_2) = (1, 2)$, you cannot move the piece at all.
- When $(R, C) = (r_3, c_3) = (2, 1)$, you can move the piece twice by moving it as $(2, 1) \rightarrow (1, 1) \rightarrow (1, 2)$.
- When $(R, C) = (r_4, c_4) = (2, 3)$, you cannot move the piece at all.
- When $(R, C) = (r_5, c_5) = (3, 1)$, you can move the piece three times by moving it as $(3, 1) \rightarrow (2, 1) \rightarrow (1, 1) \rightarrow (1, 2)$.
- When $(R, C) = (r_6, c_6) = (3, 2)$, you can move the piece once by moving it as $(3, 2) \rightarrow (1, 2)$.
- When $(R, C) = (r_7, c_7) = (3, 3)$, you cannot move the piece at all.
Sample Input 2
5 7 20 2 7 8 2 6 4 4 1 9 1 5 4 2 2 7 5 5 2 1 7 2 4 6 6 1 4 1 2 1 10 5 6 9 5 3 3 3 7 9 3 6 3 4 3 4 3 3 10 4 2 1 3 5 4 1 2 6 4 7 9
Sample Output 2
2 4 1 5 3 6 6 2 7 0 0 4 1 5 3 0 5 2 4 0
Input
Output
分数:500分
问题描述
我们有一个网格,有$H$行和$W$列。记$(i, j)$表示从上数第$i$行、从左数第$j$列的方格。
每个方格都包含一个整数。对于每个$i = 1, 2, \ldots, N$,方格$(r_i, c_i)$包含一个正整数$a_i$。其他方格包含一个0。
最初,有一个棋子在方格$(R, C)$上。 Takahashi可以将棋子移动到当前位置以外的任意方格,任意次数。 然而,当移动棋子时,必须满足以下两个条件。
- 棋子移动到的方格上的整数严格大于棋子移动前的方格上的整数。
- 棋子移动到的方格和移动前的方格在同一行或同一列。
对于每个$i = 1, 2, \ldots, N$,当$(R, C) = (r_i, c_i)$时,Takahashi最多可以移动棋子多少次。
约束条件
- $2 \leq H, W \leq 2 \times 10^5$
- $1 \leq N \leq \min(2 \times 10^5, HW)$
- $1 \leq r_i \leq H$
- $1 \leq c_i \leq W$
- $1 \leq a_i \leq 10^9$
- $i \neq j \Rightarrow (r_i, c_i) \neq (r_j, c_j)$
- 输入中的所有值都是整数。
输入
输入从标准输入以以下格式给出:
$H$ $W$ $N$ $r_1$ $c_1$ $a_1$ $r_2$ $c_2$ $a_2$ $\vdots$ $r_N$ $c_N$ $a_N$
输出
输出$N$行。 对于每个$i = 1, 2, \ldots, N$,第$i$行应该包含当$(R, C) = (r_i, c_i)$时Takahashi最多可以移动棋子的次数。
样例输入1
3 3 7 1 1 4 1 2 7 2 1 3 2 3 5 3 1 2 3 2 5 3 3 5
样例输出1
1 0 2 0 3 1 0
网格包含以下整数。
4 7 0 3 0 5 2 5 5
- 当$(R, C) = (r_1, c_1) = (1, 1)$时,你可以将棋子移动一次,移动到$(1, 1) \rightarrow (1, 2)$。
- 当$(R, C) = (r_2, c_2) = (1, 2)$时,你不能移动棋子。
- 当$(R, C) = (r_3, c_3) = (2, 1)$时,你可以将棋子移动两次,移动到$(2, 1) \rightarrow (1, 1) \rightarrow (1, 2)$。
- 当$(R, C) = (r_4, c_4) = (2, 3)$时,你不能移动棋子。
- 当$(R, C) = (r_5, c_5) = (3, 1)$时,你可以将棋子移动三次,移动到$(3, 1) \rightarrow (2, 1) \rightarrow (1, 1) \rightarrow (1, 2)$。
- 当$(R, C) = (r_6, c_6) = (3, 2)$时,你可以将棋子移动一次,移动到$(3, 2) \rightarrow (1, 2)$。
- 当$(R, C) = (r_7, c_7) = (3, 3)$时,你不能移动棋子。
样例输入2
5 7 20 2 7 8 2 6 4 4 1 9 1 5 4 2 2 7 5 5 2 1 7 2 4 6 6 1 4 1 2 1 10 5 6 9 5 3 3 3 7 9 3 6 3 4 3 4 3 3 10 4 2 1 3 5 4 1 2 6 4 7 9
样例输出2
2 4 1 5 3 6 6 2 7 0 0 4 1 5 3 0 5 2 4 0