102333: [AtCoder]ABC233 D - Count Interval
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $400$ points
Problem Statement
Given is a sequence of length $N$: $A=(A_1,A_2,\ldots,A_N)$, and an integer $K$.
How many of the contiguous subsequences of $A$ have the sum of $K$?
In other words, how many pairs of integers $(l,r)$ satisfy all of the conditions below?
- $1\leq l\leq r\leq N$
- $\displaystyle\sum_{i=l}^{r}A_i = K$
Constraints
- $1\leq N \leq 2\times 10^5$
- $|A_i| \leq 10^9$
- $|K| \leq 10^{15}$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $K$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the answer.
Sample Input 1
6 5 8 -3 5 7 0 -4
Sample Output 1
3
$(l,r)=(1,2),(3,3),(2,6)$ are the three pairs that satisfy the conditions.
Sample Input 2
2 -1000000000000000 1000000000 -1000000000
Sample Output 2
0
There may be no pair that satisfies the conditions.
Input
题意翻译
给定一个数组 $a$,问有多少个区间满足区间里所有的数的和是 $k$。Output
得分:$400$分
问题描述
给定一个长度为$N$的序列$A=(A_1,A_2,\ldots,A_N)$,以及一个整数$K$。
有多少个$A$的连续子序列的和为$K$?
换句话说,有多少对整数$(l,r)$满足以下所有条件?
- $1\leq l\leq r\leq N$
- $\displaystyle\sum_{i=l}^{r}A_i = K$
限制条件
- $1\leq N \leq 2\times 10^5$
- $|A_i| \leq 10^9$
- $|K| \leq 10^{15}$
- 输入中的所有值都是整数。
输入
输入将从标准输入以以下格式给出:
$N$ $K$ $A_1$ $A_2$ $\ldots$ $A_N$
输出
输出答案。
样例输入 1
6 5 8 -3 5 7 0 -4
样例输出 1
3
$(l,r)=(1,2),(3,3),(2,6)$是满足条件的三对整数。
样例输入 2
2 -1000000000000000 1000000000 -1000000000
样例输出 2
0
可能没有满足条件的整数对。