102380: [AtCoder]ABC238 A - Exponential or Quadratic
Memory Limit:256 MB
Time Limit:2 S
Judge Style:Text Compare
Creator:
Submit:0
Solved:0
Description
Score : $100$ points
Problem Statement
Does $2^n \gt n^2$ hold?
Constraints
- $n$ is an integer between $1$ and $10^9$ (inclusive).
Input
Input is given from Standard Input in the following format:
$n$
Output
If $2^n \gt n^2$, print Yes
; otherwise, print No
.
Sample Input 1
5
Sample Output 1
Yes
Since $2^5=32,\ 5^2=25$, we have $2^n \gt n^2$, so Yes
should be printed.
Sample Input 2
2
Sample Output 2
No
For $n=2$, we have $2^n=n^2=2^2$, so $2^n \gt n^2$ does not hold. Thus, No
should be printed.
Sample Input 3
623947744
Sample Output 3
Yes
Input
题意翻译
给定一个小于 $10^9$ 的正整数 $n$,问 $2^n$ 和 $n^2$ 那个更大?Output
分数:100分
问题描述
是否存在$2^n \gt n^2$的情况?
限制条件
- $n$是一个介于1和$10^9$(含)之间的整数。
输入
从标准输入以以下格式获取输入:
$n$
输出
如果$2^n \gt n^2$,打印Yes
;否则,打印No
。
样例输入1
5
样例输出1
Yes
因为$2^5=32,\ 5^2=25$,我们有$2^n \gt n^2$,所以应该打印Yes
。
样例输入2
2
样例输出2
No
对于$n=2$,我们有$2^n=n^2=2^2$,所以$2^n \gt n^2$不成立。因此,应该打印No
。
样例输入3
623947744
样例输出3
Yes