102407: [AtCoder]ABC240 Ex - Sequence of Substrings
Description
Score : $600$ points
Problem Statement
You are given a string $S = s_1 s_2 \ldots s_N$ of length $N$ consisting of $0$'s and $1$'s.
Find the maximum integer $K$ such that there is a sequence of $K$ pairs of integers $\big((L_1, R_1), (L_2, R_2), \ldots, (L_K, R_K)\big)$ that satisfy all three conditions below.
- $1 \leq L_i \leq R_i \leq N$ for each $i = 1, 2, \ldots, K$.
- $R_i \lt L_{i+1}$ for $i = 1, 2, \ldots, K-1$.
- The string $s_{L_i}s_{L_i+1} \ldots s_{R_i}$ is strictly lexicographically smaller than the string $s_{L_{i+1}}s_{L_{i+1}+1}\ldots s_{R_{i+1}}$.
Constraints
- $1 \leq N \leq 2.5 \times 10^4$
- $N$ is an integer.
- $S$ is a string of length $N$ consisting of $0$'s and $1$'s.
Input
Input is given from Standard Input in the following format:
$N$ $S$
Output
Print the answer.
Sample Input 1
7 0101010
Sample Output 1
3
For $K = 3$, one sequence satisfying the conditition is $(L_1, R_1) = (1, 1), (L_2, R_2) = (3, 5), (L_3, R_3) = (6, 7)$.
Indeed, $s_1 = 0$ is strictly lexicographically smaller than $s_3s_4s_5 = 010$, and $s_3s_4s_5 = 010$ is strictly lexicographically smaller than $s_6s_7 = 10$.
For $K \geq 4$, there is no sequence $\big((L_1, R_1), (L_2, R_2), \ldots, (L_K, R_K)\big)$ satisfying the condition.
Sample Input 2
30 000011001110101001011110001001
Sample Output 2
9
Input
题意翻译
给定一个长度为 $n$ 的 $01$ 串,求最多可以选出多少互不相交的子串,满足这些子串按照原串中的顺序,字典序严格升序。Output
分数:600分
问题描述
给你一个长度为 N 的字符串 $S = s_1 s_2 \ldots s_N$,由 0 和 1 组成。
找到最大的整数 $K$,使得存在一个整数对序列 $\big((L_1, R_1), (L_2, R_2), \ldots, (L_K, R_K)\big)$ 满足以下三个条件。
- 对于每个 $i = 1, 2, \ldots, K$,都有 $1 \leq L_i \leq R_i \leq N$。
- 对于 $i = 1, 2, \ldots, K-1$,都有 $R_i \lt L_{i+1}$。
- 字符串 $s_{L_i}s_{L_i+1} \ldots s_{R_i}$ 严格字典序小于 字符串 $s_{L_{i+1}}s_{L_{i+1}+1}\ldots s_{R_{i+1}}$。
限制条件
- $1 \leq N \leq 2.5 \times 10^4$
- $N$ 是一个整数。
- $S$ 是一个长度为 $N$ 的字符串,由 0 和 1 组成。
输入
输入从标准输入中给出,格式如下:
$N$ $S$
输出
打印答案。
样例输入 1
7 0101010
样例输出 1
3
对于 $K = 3$,一个满足条件的序列是 $(L_1, R_1) = (1, 1), (L_2, R_2) = (3, 5), (L_3, R_3) = (6, 7)$。 确实,$s_1 = 0$ 严格字典序小于 $s_3s_4s_5 = 010$,且 $s_3s_4s_5 = 010$ 严格字典序小于 $s_6s_7 = 10$。
对于 $K \geq 4$,不存在满足条件的序列 $\big((L_1, R_1), (L_2, R_2), \ldots, (L_K, R_K)\big)$。
样例输入 2
30 000011001110101001011110001001
样例输出 2
9