102417: [AtCoder]ABC241 Ex - Card Deck Score

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

There are some cards. Each card has one of $N$ integers written on it. Specifically, there are $B_i$ cards with $A_i$ written on them.
Next, for a combination of $M$ cards chosen out of these $(B_1+B_2\cdots +B_N)$ cards, we define the score of the combination by the product of the integers written on the $M$ cards.
Supposed that cards with the same integer written on them are indistinguishable, find the sum, modulo $998244353$, of the scores over all possible combinations of $M$ cards.

Constraints

  • $1 \leq N \leq 16$
  • $1 \leq M \leq 10^{18}$
  • $1 \leq A_i < 998244353$
  • $1 \leq B_i \leq 10^{17}$
  • If $i\neq j$, then $A_i \neq A_j$.
  • $M\leq B_1+B_2+\cdots B_N$
  • All values in input are integers.

Input

Input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$

Output

Print the answer.


Sample Input 1

3 3
3 1
5 2
6 3

Sample Output 1

819

There are $6$ possible combinations of $3$ cards.

  • A combination of $1$ card with $3$ written on it, and $2$ cards with $5$ written on them.
  • A combination of $1$ card with $3$ written on it, $1$ card with $5$ written on it, and $1$ card with $6$ written on it.
  • A combination of $1$ card with $3$ written on it, and $2$ cards with $6$ written on them.
  • A combination of $2$ cards with $5$ written on them, and $1$ card with $6$ written on it.
  • A combination of $1$ card with $5$ written on it, and $2$ cards with $6$ written on them.
  • A combination of $3$ cards with $6$ written on them.

The scores are $75$, $90$, $108$, $150$, $180$, and $216$, respectively, for a sum of $819$.


Sample Input 2

3 2
1 1
5 2
25 1

Sample Output 2

180

"A combination of a card with $1$ and another card with $25$" and "a combination of two cards with $5$ written on them" have the same score of $25$, but they are considered to be different combinations.


Sample Input 3

10 232657150901347497
139547946 28316250877914575
682142538 78223540024979445
110643588 74859962623690081
173455495 60713016476190629
271056265 85335723211047202
801329567 48049062628894325
864844366 54979173822804784
338794337 69587449430302156
737638908 15812229161735902
462149872 49993004923078537

Sample Output 3

39761306

Be sure to print the answer modulo $998244353$.

Input

题意翻译

有一些卡牌,每张卡牌上有一个数字,具体的,有 $b_i$ 张卡牌上的数字为 $a_i$。 求出拿走其中 $m$ 张卡牌的贡献之和。贡献为这些卡牌的乘积。对于本质相同的卡牌组合,只算一次。 - $n\leq 16,m\leq 10^{18},b_i\leq 10^{17},1\leq a_i<mod$

Output

分数:600分

问题描述

有一些卡片。每张卡片上写有$N$个整数中的一个。 具体来说,有$B_i$张写有$A_i$的卡片。
接下来,对于从这$(B_1+B_2\cdots +B_N)$张卡片中选出的$M$张卡片的组合,我们定义该组合的分数为写在$M$张卡片上的整数的乘积。
假设写有相同整数的卡片是不可区分的,找出所有可能的$M$张卡片组合的分数之和,对$998244353$取模。

约束条件

  • $1 \leq N \leq 16$
  • $1 \leq M \leq 10^{18}$
  • $1 \leq A_i < 998244353$
  • $1 \leq B_i \leq 10^{17}$
  • 如果$i\neq j$,则$A_i \neq A_j$。
  • $M\leq B_1+B_2+\cdots B_N$
  • 输入中的所有值都是整数。

输入

输入通过标准输入给出,格式如下:

$N$ $M$
$A_1$ $B_1$
$A_2$ $B_2$
$\vdots$
$A_N$ $B_N$

输出

打印答案。


样例输入1

3 3
3 1
5 2
6 3

样例输出1

819

有$6$种可能的$3$张卡片的组合。

  • 一种组合,其中包含一张写有$3$的卡片,两张写有$5$的卡片。
  • 一种组合,其中包含一张写有$3$的卡片,一张写有$5$的卡片,一张写有$6$的卡片。
  • 一种组合,其中包含一张写有$3$的卡片,两张写有$6$的卡片。
  • 一种组合,其中包含两张写有$5$的卡片,一张写有$6$的卡片。
  • 一种组合,其中包含一张写有$5$的卡片,两张写有$6$的卡片。
  • 一种组合,其中包含三张写有$6$的卡片。

这些组合的分数分别为$75$、$90$、$108$、$150$、$180$和$216$,和为$819$。


样例输入2

3 2
1 1
5 2
25 1

样例输出2

180

"一种组合,其中包含一张写有$1$的卡片和另一张写有$25$的卡片"和"一种组合,其中包含两张写有$5$的卡片"具有相同的分数$25$,但被视为不同的组合。


样例输入3

10 232657150901347497
139547946 28316250877914575
682142538 78223540024979445
110643588 74859962623690081
173455495 60713016476190629
271056265 85335723211047202
801329567 48049062628894325
864844366 54979173822804784
338794337 69587449430302156
737638908 15812229161735902
462149872 49993004923078537

样例输出3

39761306

请确保对$998244353$取模后打印答案。

加入题单

上一题 下一题 算法标签: