102632: [AtCoder]ABC263 C - Monotonically Increasing
Description
Score : $300$ points
Problem Statement
Print all strictly increasing integer sequences of length $N$ where all elements are between $1$ and $M$ (inclusive), in lexicographically ascending order.
Notes
For two integer sequences of the same length $A_1,A_2,\dots,A_N$ and $B_1,B_2,\dots,B_N$, $A$ is said to be lexicographically earlier than $B$ if and only if:
- there is an integer $i$ $(1 \le i \le N)$ such that $A_j=B_j$ for all integers $j$ satisfying $1 \le j < i$, and $A_i < B_i$.
An integer sequence $A_1,A_2,\dots,A_N$ is said to be strictly increasing if and only if:
- $A_i < A_{i+1}$ for all integers $i$ $(1 \le i \le N-1)$.
Constraints
- $1 \le N \le M \le 10$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $M$
Output
Print the sought sequences in lexicographically ascending order, each in its own line (see Sample Outputs).
Sample Input 1
2 3
Sample Output 1
1 2 1 3 2 3
The sought sequences are $(1,2),(1,3),(2,3)$, which should be printed in lexicographically ascending order.
Sample Input 2
3 5
Sample Output 2
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5
Input
题意翻译
打印所有长度为 $N$ 的严格递增序列,所有元素在 $1 $ 到 $M$ 之间。按照字典序升序输出。Output
分数:300分
问题描述
按照字典序递增顺序打印长度为$N$的所有严格递增整数序列,其中所有元素都在$1$和$M$之间(包括$1$和$M$)。
注意
对于两个相同长度的整数序列$A_1,A_2,\dots,A_N$和$B_1,B_2,\dots,B_N$,如果满足以下条件,则称$A$比$B$字典序更早:
- 存在整数$i$ $(1 \le i \le N)$,使得对于所有满足$1 \le j < i$的整数$j$,有$A_j=B_j$,并且$A_i < B_i$。
如果满足以下条件,则称整数序列$A_1,A_2,\dots,A_N$严格递增:
- 对于所有整数$i$ $(1 \le i \le N-1)$,有$A_i < A_{i+1}$。
约束
- $1 \le N \le M \le 10$
- 输入中的所有值都是整数。
输入
输入通过标准输入给出以下格式:
$N$ $M$
输出
按照字典序递增顺序打印目标序列,每个序列单独一行(参见样例输出)。
样例输入1
2 3
样例输出1
1 2 1 3 2 3
目标序列是$(1,2),(1,3),(2,3)$,需要按照字典序递增顺序打印。
样例输入2
3 5
样例输出2
1 2 3 1 2 4 1 2 5 1 3 4 1 3 5 1 4 5 2 3 4 2 3 5 2 4 5 3 4 5