102636: [AtCoder]ABC263 G - Erasing Prime Pairs
Description
Score : $600$ points
Problem Statement
There are integers with $N$ different values written on a blackboard. The $i$-th value is $A_i$ and is written $B_i$ times.
You may repeat the following operation as many times as possible:
- Choose two integers $x$ and $y$ written on the blackboard such that $x+y$ is prime. Erase these two integers.
Find the maximum number of times the operation can be performed.
Constraints
- $1 \leq N \leq 100$
- $1 \leq A_i \leq 10^7$
- $1 \leq B_i \leq 10^9$
- All $A_i$ are distinct.
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $\vdots$ $A_N$ $B_N$
Output
Print the answer.
Sample Input 1
3 3 3 2 4 6 2
Sample Output 1
3
We have $2 + 3 = 5$, and $5$ is prime, so you can choose $2$ and $3$ to erase them, but nothing else. Since there are four $2$s and three $3$s, you can do the operation three times.
Sample Input 2
1 1 4
Sample Output 2
2
We have $1 + 1 = 2$, and $2$ is prime, so you can choose $1$ and $1$ to erase them. Since there are four $1$s, you can do the operation twice.
Input
题意翻译
有 $n$ 种整数 $a_i$ ,第 $i$ 种有 $b_i$ 个。进行若干次操作,每次在这些数中取出两个,若它们的和为质数,分数加一,操作后把这两个数移去,求最大分数。Output
问题描述
黑板上写有$N$个不同的整数。第$i$个值为$A_i$,并且被写下了$B_i$次。
你可以尽可能多的重复以下操作:
- 选择两个黑板上写的整数$x$和$y$,使得$x+y$为质数。擦除这两个整数。
找出可以执行该操作的最大次数。
限制条件
- $1 \leq N \leq 100$
- $1 \leq A_i \leq 10^7$
- $1 \leq B_i \leq 10^9$
- 所有的$A_i$都是不同的。
- 输入中的所有值都是整数。
输入
从标准输入以以下格式获取输入:
$N$ $A_1$ $B_1$ $A_2$ $B_2$ $\vdots$ $A_N$ $B_N$
输出
打印答案。
样例输入 1
3 3 3 2 4 6 2
样例输出 1
3
我们有$2 + 3 = 5$,且$5$是质数,所以你可以选择$2$和$3$擦除它们,但没有其他可选的。由于有四个$2$s和三个$3$s,你可以执行该操作三次。
样例输入 2
1 1 4
样例输出 2
2
我们有$1 + 1 = 2$,且$2$是质数,所以你可以选择$1$和$1$擦除它们。由于有四个$1$s,你可以执行该操作两次。