102642: [AtCoder]ABC264 C - Matrix Reducing
Description
Score : $300$ points
Problem Statement
You are given a matrix $A$ with $H_1$ rows and $W_1$ columns, and a matrix $B$ with $H_2$ rows and $W_2$ columns.
- For all integer pairs $(i, j)$ such that $1 \leq i \leq H_1$ and $1 \leq j \leq W_1$, the element at the $i$-th row and $j$-th column of matrix $A$ is $A_{i, j}$.
- For all integer pairs $(i, j)$ such that $1 \leq i \leq H_2$ and $1 \leq j \leq W_2$, the element at the $i$-th row and $j$-th column of matrix $B$ is $B_{i, j}$.
You may perform the following operations on the matrix $A$ any number of (possibly $0$) times in any order:
- Choose an arbitrary row of $A$ and remove it.
- Choose an arbitrary column of $A$ and remove it.
Determine if it is possible to make the matrix $A$ equal the matrix $B$.
Constraints
- $1 \leq H_2 \leq H_1 \leq 10$
- $1 \leq W_2 \leq W_1 \leq 10$
- $1 \leq A_{i, j} \leq 10^9$
- $1 \leq B_{i, j} \leq 10^9$
- All values in input are integers.
Input
Input is given from Standard Input in the following format:
$H_1$ $W_1$ $A_{1, 1}$ $A_{1, 2}$ $\ldots$ $A_{1, W_1}$ $A_{2, 1}$ $A_{2, 2}$ $\ldots$ $A_{2, W_1}$ $\vdots$ $A_{H_1, 1}$ $A_{H_1, 2}$ $\ldots$ $A_{H_1, W_1}$ $H_2$ $W_2$ $B_{1, 1}$ $B_{1, 2}$ $\ldots$ $B_{1, W_2}$ $B_{2, 1}$ $B_{2, 2}$ $\ldots$ $B_{2, W_2}$ $\vdots$ $B_{H_2, 1}$ $B_{H_2, 2}$ $\ldots$ $B_{H_2, W_2}$
Output
Print Yes
if it is possible to make the matrix $A$ equal the matrix $B$;
print No
otherwise.
Note that the judge is case-sensitive.
Sample Input 1
4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2 3 6 8 9 16 18 19
Sample Output 1
Yes
Removing the $2$-nd column from the initial $A$ results in:
1 3 4 5 6 8 9 10 11 13 14 15 16 18 19 20
Then, removing the $3$-rd row from $A$ results in:
1 3 4 5 6 8 9 10 16 18 19 20
Then, removing the $1$-st row from $A$ results in:
6 8 9 10 16 18 19 20
Then, removing the $4$-th column from $A$ results in:
6 8 9 16 18 19
Now the matrix equals the matrix $B$.
Thus, we can make the matrix $A$ equal the matrix $B$ by repeating the operations, so Yes
should be printed.
Sample Input 2
3 3 1 1 1 1 1 1 1 1 1 1 1 2
Sample Output 2
No
Regardless of how we perform the operations, we cannot make the matrix $A$ equal the matrix $B$,
so No
should be printed.
Input
题意翻译
给定两个矩阵 $A,B$,长和宽分别为 $W_1,H_1,W_2,H_2$。 每一次操作可以删掉矩阵 $A$ 中的一行或一列,如果可以通过一些操作得到矩阵 $B$ 输出 $\mathtt{Yes}$,否则输出 $\mathtt{No}$。 $\mathtt{translate\ by\ Fire\_flame}$Output
Yes
;否则打印No
。注意,裁判是区分大小写的。
部分
样例输入1
4 5
1 2 3 4 5
6 7 8 9 10
11 12 13 14 15
16 17 18 19 20
2 3
6 8 9
16 18 19
部分
样例输出1
Yes
从初始的$A$中删除第2列得到:
1 3 4 5
6 8 9 10
11 13 14 15
16 18 19 20
然后从$A$中删除第3行得到:
1 3 4 5
6 8 9 10
16 18 19 20
然后从$A$中删除第1行得到:
6 8 9 10
16 18 19 20
然后从$A$中删除第4列得到:
6 8 9
16 18 19
现在矩阵等于矩阵$B$。
因此,我们可以通过重复操作使矩阵$A$等于矩阵$B$,所以应打印Yes
。
部分
样例输入2
3 3
1 1 1
1 1 1
1 1 1
1 1
2