102646: [AtCoder]ABC264 G - String Fair
Description
Score : $600$ points
Problem Statement
In a string fair, they determine the beauty of a non-empty string $S$ consisting of lowercase English letters.
The beauty of string $S$ equals the sum of $N$ scores determined by $N$ criteria. For $i = 1, 2, \ldots, N$, the score determined by the $i$-th criterion is "the number of occurrences of a string $T_i$ (of length at most $3$ given in the Input) in $S$ as a consecutive subsequence" multiplied by $P_i$.
Print the maximum possible beauty of a non-empty string $S$ consisting of lowercase English letters.
If it is possible to obtain infinitely large beauty, print Infinity
instead.
Here, the number of occurrences of a string $V$ in a string $U = U_1U_2\ldots U_{|U|}$ as a consecutive subsequence is defined to be the number of integers $i$ such that $1 \leq i \leq |U|-|V|+1$ and $U_iU_{i+1}\ldots U_{i+|V|-1} = V$.
Constraints
- $1 \leq N \leq 18278$
- $N$ is an integer.
- $T_i$ is a string of length between $1$ and $3$ consisting of lowercase English letters.
- $i \neq j \Rightarrow T_i \neq T_j$
- $-10^9 \leq P_i \leq 10^9$
- $P_i$ is an integer.
Input
Input is given from Standard Input in the following format:
$N$ $T_1$ $P_1$ $T_2$ $P_2$ $\vdots$ $T_N$ $P_N$
Output
Print the maximum possible beauty of a non-empty string $S$ consisting of lowercase English letters.
If it is possible to obtain infinitely large beauty, print Infinity
instead.
Sample Input 1
3 a -5 ab 10 ba -20
Sample Output 1
Infinity
For example, if $S =$ abzabz
:
- The score determined by the $1$-st criterion is $2 \times (-5) = -10$ points, because
a
occurs twice in $S$ as a consecutive subsequence. - The score determined by the $2$-nd criterion is $2 \times 10 = 20$ points, because
ab
occurs twice in $S$ as a consecutive subsequence. - The score determined by the $3$-rd criterion is $0 \times (-20) = 0$ points, because
ba
occurs $0$ times in $S$ as a consecutive subsequence.
Thus, the beauty of $S$ is $(-10) + 20 + 0 = 10$.
As another example, if $S =$ abzabzabz
:
- The score determined by the $1$-st criterion is $3 \times (-5) = -15$ points, because
a
occurs $3$ times in $S$ as a consecutive subsequence. - The score determined by the $2$-nd criterion is $3 \times 10 = 30$ points, because
ab
occurs $3$ times in $S$ as a consecutive subsequence. - The score determined by the $3$-rd criterion is $0 \times (-20) = 0$ points, because
ba
occurs $0$ times in $S$ as a consecutive subsequence.
Thus, the beauty of $S$ is $(-15) + 30 + 0 = 15$.
In general, for a positive integer $X$, if $S$ is a concatenation of $X$ copies of abz
, then the beauty of $S$ is $5X$.
Since you can obtain as large beauty as you want, Infinity
should be printed.
Sample Input 2
28 a -5 ab 10 ba -20 bb -20 bc -20 bd -20 be -20 bf -20 bg -20 bh -20 bi -20 bj -20 bk -20 bl -20 bm -20 bn -20 bo -20 bp -20 bq -20 br -20 bs -20 bt -20 bu -20 bv -20 bw -20 bx -20 by -20 bz -20
Sample Output 2
5
$S = $ ab
achieves the maximum beauty possible.
Sample Input 3
26 a -1 b -1 c -1 d -1 e -1 f -1 g -1 h -1 i -1 j -1 k -1 l -1 m -1 n -1 o -1 p -1 q -1 r -1 s -1 t -1 u -1 v -1 w -1 x -1 y -1 z -1
Sample Output 3
-1
Note that $S$ should be a non-empty string.
Input
题意翻译
在“字符串评鉴大会”上,由小写字母构成的非空字符串 $S$ 的由 $N$ 条标准决定: 每条标准是一个字符串 $T_i$ ($T_i$ 的长度不超过 $3$)和对应的得分 $P_i$,$S$ 的“美丽度”定义为: $$\sum_{i=1}^N P_i\times C_i$$ 其中 $C_i$ 为 $T_i$ 在 $S$ 中出现的次数。 字符串 $V$ 在字符串 $U=U_1U_2 \cdots U_{|U|}$ 中出现的次数定义为:满足 $1\le i\le \vert U\vert -\vert V\vert +1$ 且 $U_iU_{i+1}\cdots U_{i+\vert V\vert -1}=V$ 的整数 $i$ 的数量,其中 $\vert U\vert$ 表示字符串 $U$ 的长度。 现在给出 $N$ 条标准,求出这 $N$ 条标准下“美丽度”最大的**非空**字符串 $S$ 的“美丽度”。如果这个答案是无限大,输出 `Infinity`。 数据范围: + $1\le N\le 18278$,$N$ 为整数。 + $1\le \vert T_i\vert \le 3$,$T_i$ 只包含小写字母。 + 若 $i\neq j$,则 $T_i\neq T_j$。 + $-10^9\le P_i\le 10^9$。 + $P_i$ 均为整数。 样例解释: 样例 $1$:$S$ 为 $X$ 个 $\texttt{abz}$ 相连时,它的“美丽度”是 $5X$,所以 $S$ 的最大“美丽度”无限大。 样例 $2$:$S=\texttt{ab}$ 时“美丽度”最大。 样例 $3$:请注意 $S$ 不能为空。Output
分数:600分
问题描述
在一个字符串集市上,他们确定了一个非空字符串$S$由小写英文字母组成的美丽。
字符串$S$的美丽等于由$N$个标准确定的$N$个分数之和。 对于$i = 1, 2, \ldots, N$,由第$i$个标准确定的分数是 "字符串$T_i$(在输入中给出的长度最多为$3$)在$S$中作为连续子序列出现的次数"乘以$P_i$。
打印由小写英文字母组成的非空字符串$S$的最大可能美丽。
如果有可能获得无限大的美丽,请打印Infinity
。
这里,字符串$V$作为字符串$U = U_1U_2\ldots U_{|U|}$的连续子序列出现的次数定义为 满足$1 \leq i \leq |U|-|V|+1$且$U_iU_{i+1}\ldots U_{i+|V|-1} = V$的整数$i$的数量。
约束
- $1 \leq N \leq 18278$
- $N$是一个整数。
- $T_i$是一个由小写英文字母组成的长度在$1$和$3$之间的字符串。
- $i \neq j \Rightarrow T_i \neq T_j$
- $-10^9 \leq P_i \leq 10^9$
- $P_i$是一个整数。
输入
输入从标准输入以以下格式给出:
$N$ $T_1$ $P_1$ $T_2$ $P_2$ $\vdots$ $T_N$ $P_N$
输出
打印由小写英文字母组成的非空字符串$S$的最大可能美丽。
如果有可能获得无限大的美丽,请打印Infinity
。
样例输入1
3 a -5 ab 10 ba -20
样例输出1
Infinity
例如,如果$S =$ abzabz
:
- 由第$1$个标准确定的分数是$2 \times (-5) = -10$分,因为
a
在$S$中作为连续子序列出现两次。 - 由第$2$个标准确定的分数是$2 \times 10 = 20$分,因为
ab
在$S$中作为连续子序列出现两次。 - 由第$3$个标准确定的分数是$0 \times (-20) = 0$分,因为
ba
在$S$中作为连续子序列出现$0$次。
因此,$S$的美丽是$(-10) + 20 + 0 = 10$。
作为另一个例子,如果$S =$ abzabzabz
:
- 由第$1$个标准确定的分数是$3 \times (-5) = -15$分,因为
a
在$S$中作为连续子序列出现$3$次。 - 由第$2$个标准确定的分数是$3 \times 10 = 30$分,因为
ab
在$S$中作为连续子序列出现$3$次。 - 由第$3$个标准确定的分数是$0 \times (-20) = 0$分,因为
ba
在$S$中作为连续子序列出现$0$次。
因此,$S$的美丽是$(-15) + 30 + 0 = 15$。
一般来说,对于正整数$X$,如果$S$是$abz$的$X$份副本的连接,则$S$的美丽是$5X$。
由于您可以获得您想要的任何大的美丽,因此应打印Infinity
。
样例输入2
28 a -5 ab 10 ba -20 bb -20 bc -20 bd -20 be -20 bf -20 bg -20 bh -20 bi -20 bj -20 bk -20 bl -20 bm -20 bn -20 bo -20 bp -20 bq -20 br -20 bs -20 bt -20 bu -20 bv -20 bw -20 bx -20 by -20 bz -20
样例输出2
5
$S = $ ab
实现了可能的最大美丽。
样例输入3
26 a -1 b -1 c -1 d -1 e -1 f -1 g -1 h -1 i -1 j -1 k -1 l -1 m -1 n -1 o -1 p -1 q -1 r -1 s -1 t -1 u -1 v -1 w -1 x -1 y -1 z -1
样例输出3
-1
注意$S$应该是一个非空字符串。