102752: [AtCoder]ABC275 C - Counting Squares
Description
Score : $300$ points
Problem Statement
There is a two-dimensional plane. For integers $r$ and $c$ between $1$ and $9$, there is a pawn at the coordinates $(r,c)$ if the $c$-th character of $S_{r}$ is #
, and nothing if the $c$-th character of $S_{r}$ is .
.
Find the number of squares in this plane with pawns placed at all four vertices.
Constraints
- Each of $S_1,\ldots,S_9$ is a string of length $9$ consisting of
#
and.
.
Input
The input is given from Standard Input in the following format:
$S_1$ $S_2$ $\vdots$ $S_9$
Output
Print the answer.
Sample Input 1
##....... ##....... ......... .......#. .....#... ........# ......#.. ......... .........
Sample Output 1
2
The square with vertices $(1,1)$, $(1,2)$, $(2,2)$, and $(2,1)$ have pawns placed at all four vertices.
The square with vertices $(4,8)$, $(5,6)$, $(7,7)$, and $(6,9)$ also have pawns placed at all four vertices.
Thus, the answer is $2$.
Sample Input 2
.#....... #.#...... .#....... ......... ....#.#.# ......... ....#.#.# ........# .........
Sample Output 2
3
Input
题意翻译
### 题目描述 给定一个 $9 \times 9$ 的矩阵。 矩阵中只包含 `.`, `#` 两种字符。 请求出以 `#` 作为四个顶点构成的正方形的数量。Output
得分:300分
问题描述
在一个二维平面上。对于1到9之间的整数$r$和$c$,如果字符串$S_{r}$的第$c$个字符是#
,则在坐标$(r,c)$处有一个棋子;如果字符串$S_{r}$的第$c$个字符是.
,则没有棋子。
找出在这个平面上有多少个正方形,四个顶点都放置了棋子。
限制条件
- 每个$S_1,\ldots,S_9$都是由
#
和.
组成的长度为9的字符串。
输入
输入从标准输入按以下格式给出:
$S_1$ $S_2$ $\vdots$ $S_9$
输出
打印答案。
样例输入1
##....... ##....... ......... .......#. .....#... ........# ......#.. ......... .........
样例输出1
2
以$(1,1)$,$(1,2)$,$(2,2)$和$(2,1)$为顶点的正方形的四个顶点都放置了棋子。
以$(4,8)$,$(5,6)$,$(7,7)$和$(6,9)$为顶点的正方形的四个顶点也放置了棋子。
因此,答案为$2$。
样例输入2
.#....... #.#...... .#....... ......... ....#.#.# ......... ....#.#.# ........# .........
样例输出2
3