102824: [AtCoder]ABC282 E - Choose Two and Eat One
Description
Score : $500$ points
Problem Statement
A box contains $N$ balls, each with an integer between $1$ and $M-1$ written on it. For $i = 1, 2, \ldots, N$, the integer written on the $i$-th ball is $A_i$.
While the box has two or more balls remaining, Takahashi will repeat the following.
- First, choose two balls arbitrarily.
- Then, get a score equal to the remainder when $x^y + y^x$ is divided by $M$, where $x$ and $y$ are the integers written on the two balls.
- Finally, choose one of the two balls arbitrarily, eat it, and return the other to the box.
Print the maximum possible total score Takahashi will get.
Constraints
- $2 \leq N \leq 500$
- $2 \leq M \leq 10^9$
- $1 \leq A_i \leq M-1$
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$
Output
Print the answer.
Sample Input 1
4 10 4 2 3 2
Sample Output 1
20
Consider the following scenario. Below, $X \bmod Y$ denotes the remainder when a non-negative integer $X$ is divided by a positive integer $Y$.
- Take the first and third balls from the box to score $(4^3 + 3^4) \bmod 10 = 5$ points. Then, eat the first ball and return the third to the box. Now, the box has the second, third, and fourth balls.
- Take the third and fourth balls from the box to score $(3^2 + 2^3) \bmod 10 = 7$ points. Then, eat the third ball and return the fourth to the box. Now, the box has the second and fourth balls.
- Take the second and fourth balls from the box to score $(2^2 + 2^2) \bmod 10 = 8$ points. Then, eat the second ball and return the fourth to the box. Now, the box has just the fourth ball.
Here, Takahashi scores a total of $5 + 7 + 8 = 20$ points, which is the maximum possible value.
Sample Input 2
20 100 29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8
Sample Output 2
1733
Input
题意翻译
有 $n$ 个数 $a_i$,你每次可以选出两个数 $a_i$ 和 $a_j$,获得 $(a_i^{a_j}+a_j^{a_i}) \bmod M$ 分,并选择一个数删掉,求最大得分。 $1\le n\le 500$。Output
问题描述
一个盒子里有$N$个球,每个球上都写有一个1到$M-1$之间的整数。对于$i = 1, 2, \ldots, N$,第$i$个球上写的数是$A_i$。
当盒子中剩下两个或更多球时,高桥将重复以下操作。
- 首先,随意选择两个球。
- 然后,获得一个等于$x^y + y^x$除以$M$的余数的分数,其中$x$和$y$是两个球上写的数。
- 最后,随意选择其中一个球,吃掉它,将另一个球放回盒子中。
打印高桥可能获得的最大总分。
约束
- $2 \leq N \leq 500$
- $2 \leq M \leq 10^9$
- $1 \leq A_i \leq M-1$
- 输入中的所有值都是整数。
输入
输入将从标准输入以以下格式给出:
$N$ $M$ $A_1$ $A_2$ $\ldots$ $A_N$
输出
打印答案。
样例输入1
4 10 4 2 3 2
样例输出1
20
考虑以下场景。在下面的表达式中,$X \bmod Y$表示非负整数$X$除以正整数$Y$的余数。
- 从盒子里取出第一个和第三个球,得分为$(4^3 + 3^4) \bmod 10 = 5$。然后,吃掉第一个球,将第三个球放回盒子。现在,盒子中有第二个、第三个和第四个球。
- 从盒子里取出第三个和第四个球,得分为$(3^2 + 2^3) \bmod 10 = 7$。然后,吃掉第三个球,将第四个球放回盒子。现在,盒子中有第二个和第四个球。
- 从盒子里取出第二个和第四个球,得分为$(2^2 + 2^2) \bmod 10 = 8$。然后,吃掉第二个球,将第四个球放回盒子。现在,盒子中只有一个第四个球。
在这里,高桥总共得分为$5 + 7 + 8 = 20$,这是可能的最大值。
样例输入2
20 100 29 31 68 20 83 66 23 84 69 96 41 61 83 37 52 71 18 55 40 8
样例输出2
1733