102907: [Atcoder]ABC290 Ex - Bow Meow Optimization

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

There are $N$ dogs numbered $1$ through $N$ and $M$ cats numbered $1$ through $M$. You will arrange the $(N+M)$ animals in a line from left to right. An arrangement causes each animal's frustration as follows:

  • The frustration of dog $i$ is $A_i\times|x-y|$, where $x$ and $y$ are the numbers of cats to the left and right of that dog, respectively.
  • The frustration of cat $i$ is $B_i\times|x-y|$, where $x$ and $y$ are the numbers of dogs to the left and right of that cat, respectively.

Find the minimum possible sum of the frustrations.

Constraints

  • $1\leq N,M \leq 300$
  • $1\leq A_i,B_i \leq 10^9$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$
$B_1$ $B_2$ $\ldots$ $B_M$

Output

Print the answer as an integer.


Sample Input 1

2 2
1 3
2 4

Sample Output 1

6

Consider the following arrangement: dog $1$, cat $2$, dog $2$, cat $1$, from left to right. Then,

  • dog $1$'s frustration is $1\times|0-2|=2$;
  • dog $2$'s frustration is $3\times|1-1|=0$;
  • cat $1$'s frustration is $2\times|2-0|=4$; and
  • cat $2$'s frustration is $4\times|1-1|=0$,

so the sum of the frustrations is $6$. Rearranging the animals does not make the sum less than $6$, so the answer is $6$.


Sample Input 2

1 2
100
100 290

Sample Output 2

390

Sample Input 3

5 7
522 575 426 445 772
81 447 629 497 202 775 325

Sample Output 3

13354

Input

题意翻译

$n$ 只狗和 $m$ 支猫(编号从 $1$ 开始)排成一列,第 $i$ 只狗权值为 $a_i$,第 $i$ 只猫权值为 $b_i$。 对于一种排列方案,设第 $i$ 只狗左侧、右侧猫数目分别为 $l_i$、$r_i$,第 $i$ 只猫左侧、右侧狗数目分别为 $p_i$、$q_i$,定义此排列的不和谐度为 $(\sum_{i=1}^na_i|l_i-r_i|)+(\sum_{i=1}^mb_i|p_i-q_i|)$。 求所有排列方案中不和谐度的最小值。

Output

分数:$600$分

问题描述

有编号为$1$到$N$的$N$只狗和编号为$1$到$M$的$M$只猫。你需要将这$(N+M)$只动物从左到右排成一行。一种排列方式会导致每只动物的< strong>挫败感如下:

  • 狗$i$的挫败感是$A_i\times|x-y|$,其中$x$和$y$分别是该狗左边和右边的猫的数量。
  • 猫$i$的挫败感是$B_i\times|x-y|$,其中$x$和$y$分别是该猫左边和右边的狗的数量。

找出挫败感之和的最小可能值。

约束条件

  • $1\leq N,M \leq 300$
  • $1\leq A_i,B_i \leq 10^9$
  • 输入中的所有值都是整数。

输入

输入数据从标准输入给出,格式如下:

$N$ $M$
$A_1$ $A_2$ $\ldots$ $A_N$
$B_1$ $B_2$ $\ldots$ $B_M$

输出

将答案作为一个整数输出。


样例输入1

2 2
1 3
2 4

样例输出1

6

考虑以下排列方式:狗$1$,猫$2$,狗$2$,猫$1$,从左到右。那么,

  • 狗$1$的挫败感是$1\times|0-2|=2$;
  • 狗$2$的挫败感是$3\times|1-1|=0$;
  • 猫$1$的挫败感是$2\times|2-0|=4$;和
  • 猫$2$的挫败感是$4\times|1-1|=0$,

所以挫败感之和为$6$。重新排列动物并不能使挫败感之和小于$6$,所以答案是$6$。


样例输入2

1 2
100
100 290

样例输出2

390

样例输入3

5 7
522 575 426 445 772
81 447 629 497 202 775 325

样例输出3

13354

加入题单

上一题 下一题 算法标签: