102916: [Atcoder]ABC291 G - OR Sum

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:0 Solved:0

Description

Score : $600$ points

Problem Statement

There are length-$N$ sequences $A=(A_0,A_1,\ldots,A_{N-1})$ and $B=(B_0,B_1,\ldots,B_{N-1})$.
Takahashi may perform the following operation on $A$ any number of times (possibly zero):

  • apply a left cyclic shift to the sequence $A$. In other words, replace $A$ with $A'$ defined by $A'_i=A_{(i+1)\% N}$, where $x\% N$ denotes the remainder when $x$ is divided by $N$.

Takahashi's objective is to maximize $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$, where $x|y$ denotes the bitwise logical sum (bitwise OR) of $x$ and $y$.

Find the maximum possible $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$.

What is the bitwise logical sum (bitwise OR)? The logical sum (or the OR operation) is an operation on two one-bit integers ($0$ or $1$) defined by the table below.
The bitwise logical sum (bitwise OR) is an operation of applying the logical sum bitwise.
$x$ $y$ $x|y$
$0$ $0$ $0$
$0$ $1$ $1$
$1$ $0$ $1$
$1$ $1$ $1$

The logical sum yields $1$ if at least one of the bits $x$ and $y$ is $1$. Conversely, it yields $0$ only if both of them are $0$.

Example
0110 | 0101 = 0111

Constraints

  • $2 \leq N \leq 5\times 10^5$
  • $0\leq A_i,B_i \leq 31$
  • All values in the input are integers.

Input

The input is given from Standard Input in the following format:

$N$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$
$B_0$ $B_1$ $\ldots$ $B_{N-1}$

Output

Print the maximum possible $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$.


Sample Input 1

3
0 1 3
0 2 3

Sample Output 1

8

If Takahashi does not perform the operation, $A$ remains $(0,1,3)$, and we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(0|0)+(1|2)+(3|3)=0+3+3=6$;
if he performs the operation once, making $A=(1,3,0)$, we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(1|0)+(3|2)+(0|3)=1+3+3=7$; and
if he performs the operation twice, making $A=(3,0,1)$, we have $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(3|0)+(0|2)+(1|3)=3+2+3=8$.
If he performs the operation three or more times, $A$ becomes one of the sequences above, so the maximum possible $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$ is $8$, which should be printed.


Sample Input 2

5
1 6 1 4 3
0 6 4 0 1

Sample Output 2

23

The value is maximized if he performs the operation three times, making $A=(4,3,1,6,1)$,
where $\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(4|0)+(3|6)+(1|4)+(6|0)+(1|1)=4+7+5+6+1=23$.

Input

题意翻译

给定两个长为 $n$ 的序列 $A_i$, $B_i$,重新排列 $A_i$ 使得 $ \displaystyle\sum_{i=0}^{N-1}\ (A_i|B_i) $ 最大。 $2 \le n \le 10^5$ $0 \le A_i,B_i \le 31$

Output

分数:$600$分

问题描述

长度为$N$的序列$A=(A_0,A_1,\ldots,A_{N-1})$和$B=(B_0,B_1,\ldots,B_{N-1})$。

  • 对序列$A$执行任意次数(可能为零次)的左循环移位操作。换句话说,将$A$替换为$A'$,其中$A'_i=A_{(i+1)\% N}$,其中$x\% N$表示$x$除以$N$的余数。

Takahashi的目标是最大化$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$,其中$x|y$表示位逻辑和(位或)。

找到最大的可能的$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$。

什么是位逻辑和(位或)? 位逻辑和(或位或操作)是对两个一位整数(0或1)定义的操作,如下表所示。 位逻辑和(位或)是对位进行逻辑和应用的操作。
$x$ $y$ $x|y$
$0$ $0$ $0$
$0$ $1$ $1$
$1$ $0$ $1$
$1$ $1$ $1$

当位$x$和$y$中的至少一个为1时,逻辑和产生1。相反,只有当它们都为0时,它才会产生0。

示例
0110 | 0101 = 0111

约束条件

  • $2 \leq N \leq 5\times 10^5$
  • $0\leq A_i,B_i \leq 31$
  • 输入中的所有值都是整数。

输入

输入以标准输入的以下格式给出:

$N$
$A_0$ $A_1$ $\ldots$ $A_{N-1}$
$B_0$ $B_1$ $\ldots$ $B_{N-1}$

输出

打印最大的可能的$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$。


样例输入1

3
0 1 3
0 2 3

样例输出1

8

如果Takahashi不执行操作,$A$保持为$(0,1,3)$,我们有$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(0|0)+(1|2)+(3|3)=0+3+3=6$; 如果他执行一次操作,使$A=(1,3,0)$,我们有$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(1|0)+(3|2)+(0|3)=1+3+3=7$;并且 如果他执行两次操作,使$A=(3,0,1)$,我们有$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(3|0)+(0|2)+(1|3)=3+2+3=8$。 如果他执行三次或更多次操作,$A$将变为上述序列之一,因此最大的可能的$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)$为$8$,应该打印出来。


样例输入2

5
1 6 1 4 3
0 6 4 0 1

样例输出2

23

如果他执行三次操作,使$A=(4,3,1,6,1)$,其中$\displaystyle\sum_{i=0}^{N-1} (A_i|B_i)=(4|0)+(3|6)+(1|4)+(6|0)+(1|1)=4+7+5+6+1=23$,则值最大。

加入题单

上一题 下一题 算法标签: