102925: [Atcoder]ABC292 F - Regular Triangle Inside a Rectangle
Description
Score : $500$ points
Problem Statement
Find the maximum side length of a regular triangle that can be drawn within a rectangle whose side lengths are $A$ and $B$.
Constraints
- $1 \leq A,B \leq 1000$
- $A$ and $B$ are integers.
Input
The input is given from Standard Input in the following format:
$A$ $B$
Output
Print the answer.
Your output is considered correct if the absolute or relative error from the true answer is at most $10^{-9}$.
Sample Input 1
1 1
Sample Output 1
1.03527618041008295791
The following figure shows an optimal drawing, with the side length of $\sqrt{6} - \sqrt{2}$.
Note that the sample output does not strictly match $\sqrt{6}- \sqrt{2}$, but the error is within $10^{-9}$, so it is considered correct.
Input
题意翻译
给定一个边长为 $a$ 和 $b$ 的矩形,求能放下的边长最长的等边三角形的边长是多少。Output
分数:500分
问题描述
在一个边长为$A$和$B$的矩形内,找出能够画出的正三角形的最大边长。
限制条件
- $1 \leq A,B \leq 1000$
- $A$和$B$都是整数。
输入
输入从标准输入按以下格式给出:
$A$ $B$
输出
打印答案。
如果与真实答案的绝对或相对误差不超过$10^{-9}$,则认为您的输出是正确的。
样例输入 1
1 1
样例输出 1
1.03527618041008295791
下图显示了一个最优的绘制方案,其边长为$\sqrt{6} - \sqrt{2}$。
注意,样例输出并不严格等于$\sqrt{6}- \sqrt{2}$,但是误差不超过$10^{-9}$,因此被认为是正确的。