103004: [Atcoder]ABC300 E - Dice Product 3

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:8 Solved:0

Description

Score : $500$ points

Problem Statement

You have an integer $1$ and a die that shows integers between $1$ and $6$ (inclusive) with equal probability.
You repeat the following operation while your integer is strictly less than $N$:

  • Cast a die. If it shows $x$, multiply your integer by $x$.

Find the probability, modulo $998244353$, that your integer ends up being $N$.

How to find a probability modulo $998244353$? We can prove that the sought probability is always rational. Additionally, under the constraints of this problem, when that value is represented as $\frac{P}{Q}$ with two coprime integers $P$ and $Q$, we can prove that there is a unique integer $R$ such that $R \times Q \equiv P\pmod{998244353}$ and $0 \leq R \lt 998244353$. Find this $R$.

Constraints

  • $2 \leq N \leq 10^{18}$
  • $N$ is an integer.

Input

The input is given from Standard Input in the following format:

$N$

Output

Print the probability, modulo $998244353$, that your integer ends up being $N$.


Sample Input 1

6

Sample Output 1

239578645

One of the possible procedures is as follows.

  • Initially, your integer is $1$.
  • You cast a die, and it shows $2$. Your integer becomes $1 \times 2 = 2$.
  • You cast a die, and it shows $4$. Your integer becomes $2 \times 4 = 8$.
  • Now your integer is not less than $6$, so you terminate the procedure.

Your integer ends up being $8$, which is not equal to $N = 6$.

The probability that your integer ends up being $6$ is $\frac{7}{25}$. Since $239578645 \times 25 \equiv 7 \pmod{998244353}$, print $239578645$.


Sample Input 2

7

Sample Output 2

0

No matter what the die shows, your integer never ends up being $7$.


Sample Input 3

300

Sample Output 3

183676961

Sample Input 4

979552051200000000

Sample Output 4

812376310

Input

题意翻译

你有一个整数 $1$ 和一个等概率显示 $1$ 到 $6$ 的整数的骰子。当你的整数严格小于 $N$ 时,你重复下面的操作: + 投这个骰子。如果它显示的是 $x$,就用你的整数乘以 $x$。 找出你的整数最后是 $N$ 的概率,模 $998244353$。

Output

得分:500分

问题描述

你有一个整数1和一个骰子,骰子显示1到6(包括1和6)之间的整数,概率相等。
当你手上的整数严格小于N时,重复以下操作:

  • 投掷骰子。如果它显示x,将你的整数乘以x。

求你的整数最终等于N的概率,对998244353取模。

如何对998244353取模计算概率? 我们可以证明所求概率总是有理数。 此外,在本问题的约束下,当该值表示为$\frac{P}{Q}$时,其中$P$和$Q$是互质的整数,我们可以证明存在一个唯一的整数$R$,满足$R \times Q \equiv P\pmod{998244353}$且$0 \leq R \lt 998244353$。 找到这个$R$。

约束

  • $2 \leq N \leq 10^{18}$
  • N是一个整数。

输入

输入从标准输入按以下格式给出:

$N$

输出

输出你的整数最终等于N的概率,对998244353取模。


样例输入1

6

样例输出1

239578645

可能的其中一个过程如下:

  • 最初,你的整数为1。
  • 你投掷骰子,显示2。你的整数变为$1 \times 2 = 2$。
  • 你投掷骰子,显示4。你的整数变为$2 \times 4 = 8$。
  • 现在你的整数不再小于6,所以你终止过程。

你的整数最终变为8,与N=6不相等。

你的整数最终等于6的概率为$\frac{7}{25}$。由于$239578645 \times 25 \equiv 7 \pmod{998244353}$,输出239578645。


样例输入2

7

样例输出2

0

无论骰子显示什么,你的整数永远不会变为7。


样例输入3

300

样例输出3

183676961

样例输入4

979552051200000000

样例输出4

812376310

HINT

一开始是1,摇骰子,摇到几就乘几,最终得到n的概率是多少?

加入题单

上一题 下一题 算法标签: