103114: [Atcoder]ABC311 E - Defect-free Squares

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:5 Solved:0

Description

Score : $475$ points

Problem Statement

There is a grid with $H$ rows and $W$ columns. Let $(i, j)$ denote the square at the $i$-th row from the top and $j$-th column from the left of the grid.
Each square of the grid is holed or not. There are exactly $N$ holed squares: $(a_1, b_1), (a_2, b_2), \dots, (a_N, b_N)$.

When the triple of positive integers satisfies the following condition, the square region whose top-left corner is $(i, j)$ and whose bottom-right corner is $(i + n - 1, j + n - 1)$ is called a holeless square.

  • $i + n - 1 \leq H$.
  • $j + n - 1 \leq W$.
  • For every pair of non-negative integers $(k, l)$ such that $0 \leq k \leq n - 1, 0 \leq l \leq n - 1$, square $(i + k, j + l)$ is not holed.

How many holeless squares are in the grid?

Constraints

  • $1 \leq H, W \leq 3000$
  • $0 \leq N \leq \min(H \times W, 10^5)$
  • $1 \leq a_i \leq H$
  • $1 \leq b_i \leq W$
  • All $(a_i, b_i)$ are pairwise different.
  • All input values are integers.

Input

The input is given from Standard Input in the following format:

$H$ $W$ $N$
$a_1$ $b_1$
$a_2$ $b_2$
$\vdots$
$a_N$ $b_N$

Output

Print the number of holeless squares.


Sample Input 1

2 3 1
2 3

Sample Output 1

6

There are six holeless squares, listed below. For the first five, $n = 1$, and the top-left and bottom-right corners are the same square.

  • The square region whose top-left and bottom-right corners are $(1, 1)$.
  • The square region whose top-left and bottom-right corners are $(1, 2)$.
  • The square region whose top-left and bottom-right corners are $(1, 3)$.
  • The square region whose top-left and bottom-right corners are $(2, 1)$.
  • The square region whose top-left and bottom-right corners are $(2, 2)$.
  • The square region whose top-left corner is $(1, 1)$ and whose bottom-right corner is $(2, 2)$.

Sample Input 2

3 2 6
1 1
1 2
2 1
2 2
3 1
3 2

Sample Output 2

0

There may be no holeless square.


Sample Input 3

1 1 0

Sample Output 3

1

The whole grid may be a holeless square.


Sample Input 4

3000 3000 0

Sample Output 4

9004500500

Input

题意翻译

给出一个 $H\times W$ 的矩阵,每个位置**要么有洞,要么没洞**,问有多少个每个元素均为正整数的三元组 $(x,y,n)$,满足: $x+n-1\le H$,$y+n-1\le W$,以 $(x,y)$ 为左上角、$(x+n-1,y+n-1)$ 为右下角的矩阵**每个位置都没有洞**。 $H,W\le 3000$,洞的个数不超过 $10^5$。

Output

得分:475分

问题描述

有一个包含$H$行和$W$列的网格。令$(i, j)$表示网格中从上数第$i$行,从左数第$j$列的方格。

网格中的每个方格要么有洞,要么没有洞。总共有$N$个有洞的方格:$(a_1, b_1), (a_2, b_2), \dots, (a_N, b_N)$。

当正整数三元组$(i, j, n)$满足以下条件时,其左上角为$(i, j)$,右下角为$(i + n - 1, j + n - 1)$的方形区域被称为“无洞的正方形”。

  • $i + n - 1 \leq H$。
  • $j + n - 1 \leq W$。
  • 对于每一对非负整数$(k, l)$,满足$0 \leq k \leq n - 1, 0 \leq l \leq n - 1$,方格$(i + k, j + l)$没有洞。

网格中有多少个无洞的正方形?

约束条件

  • $1 \leq H, W \leq 3000$
  • $0 \leq N \leq \min(H \times W, 10^5)$
  • $1 \leq a_i \leq H$
  • $1 \leq b_i \leq W$
  • 所有的$(a_i, b_i)$两两不同。
  • 所有的输入值都是整数。

输入

输入从标准输入按照以下格式给出:

$H$ $W$ $N$
$a_1$ $b_1$
$a_2$ $b_2$
$\vdots$
$a_N$ $b_N$

输出

打印无洞的正方形的数量。


样例输入1

2 3 1
2 3

样例输出1

6

有六个无洞的正方形,如下所示。前五个的$n=1$,左上角和右下角是同一个方格。

  • 其左上角和右下角为$(1, 1)$的正方形区域。
  • 其左上角和右下角为$(1, 2)$的正方形区域。
  • 其左上角和右下角为$(1, 3)$的正方形区域。
  • 其左上角和右下角为$(2, 1)$的正方形区域。
  • 其左上角和右下角为$(2, 2)$的正方形区域。
  • 其左上角为$(1, 1)$,右下角为$(2, 2)$的正方形区域。

样例输入2

3 2 6
1 1
1 2
2 1
2 2
3 1
3 2

样例输出2

0

可能没有无洞的正方形。


样例输入3

1 1 0

样例输出3

1

整个网格可能是一个无洞的正方形。


样例输入4

3000 3000 0

样例输出4

9004500500

加入题单

上一题 下一题 算法标签: