103125: [Atcoder]ABC312 F - Cans and Openers
Description
Score : $500$ points
Problem Statement
There are $N$ items.
Each of these is one of a pull-tab can, a regular can, or a can opener.
The $i$-th item is described by an integer pair $(T_i, X_i)$ as follows:
- If $T_i = 0$, the $i$-th item is a pull-tab can; if you obtain it, you get a happiness of $X_i$.
- If $T_i = 1$, the $i$-th item is a regular can; if you obtain it and use a can opener against it, you get a happiness of $X_i$.
- If $T_i = 2$, the $i$-th item is a can opener; it can be used against at most $X_i$ cans.
Find the maximum total happiness that you get by obtaining $M$ items out of $N$.
Constraints
- $1 \leq M \leq N \leq 2 \times 10^5$
- $T_i$ is $0$, $1$, or $2$.
- $1 \leq X_i \leq 10^9$
- All input values are integers.
Input
The input is given from Standard Input in the following format:
$N$ $M$ $T_1$ $X_1$ $T_2$ $X_2$ $\vdots$ $T_N$ $X_N$
Output
Print the answer as an integer.
Sample Input 1
8 4 0 6 0 6 1 3 1 5 1 15 2 1 2 10 2 100
Sample Output 1
27
If you obtain the $1$-st, $2$-nd, $5$-th, and $7$-th items, and use the $7$-th item (a can opener) against the $5$-th item, you will get a happiness of $6 + 6 + 15 = 27$.
There are no ways to obtain items to get a happiness of $28$ or greater, but you can still get a happiness of $27$ by obtaining the $6$-th or $8$-th items instead of the $7$-th in the combination above.
Sample Input 2
5 5 1 5 1 5 1 5 1 5 1 5
Sample Output 2
0
Sample Input 3
12 6 2 2 0 1 0 9 1 3 1 5 1 3 0 4 2 1 1 8 2 1 0 1 0 4
Sample Output 3
30
Input
Output
问题描述
有N件物品。
- 如果$T_i = 0$,第i个物品是一个拉环罐头;如果你得到它,你会得到幸福值$X_i$。
- 如果$T_i = 1$,第i个物品是一个普通罐头;如果你得到它并使用开罐器对它使用,你会得到幸福值$X_i$。
- 如果$T_i = 2$,第i个物品是一个开罐器;它可以对最多$X_i$个罐头使用。
找到从N件物品中获取M件物品时能得到的最大总幸福值。
约束
- $1 \leq M \leq N \leq 2 \times 10^5$
- $T_i$是0,1或2。
- $1 \leq X_i \leq 10^9$
- 所有输入值都是整数。
输入
输入从标准输入以以下格式给出:
$N$ $M$ $T_1$ $X_1$ $T_2$ $X_2$ $\vdots$ $T_N$ $X_N$
输出
打印答案作为整数。
样例输入1
8 4 0 6 0 6 1 3 1 5 1 15 2 1 2 10 2 100
样例输出1
27
如果你获取第1个,第2个,第5个和第7个物品,并对第5个物品(一个开罐器)使用第7个物品,你会得到幸福值$6 + 6 + 15 = 27$。
没有获取物品的方法可以获得幸福值为28或更大的方法,但是你仍然可以通过在上面的组合中获取第6个或第8个物品而不是第7个来获得幸福值27。
样例输入2
5 5 1 5 1 5 1 5 1 5 1 5
样例输出2
0
样例输入3
12 6 2 2 0 1 0 9 1 3 1 5 1 3 0 4 2 1 1 8 2 1 0 1 0 4
样例输出3
30