103313: [Atcoder]ABC331 D - Tile Pattern

Memory Limit:256 MB Time Limit:2 S
Judge Style:Text Compare Creator:
Submit:10 Solved:0

Description

Score : $450$ points

Problem Statement

There is a grid with $10^9$ by $10^9$ squares. Let $(i, j)$ denote the square at the $(i + 1)$-th row from the top and the $(j + 1)$-th column from the left $(0 \leq i, j \lt 10^9)$. (Note the unusual index assignment.)
Each square is black or white. The color of the square $(i, j)$ is represented by a character $P[i \bmod N][j \bmod N]$, where B means black, and W means white. Here, $a \bmod b$ denotes the remainder when $a$ is divided by $b$.

Answer $Q$ queries.
Each query gives you four integers $A, B, C, D$ and asks you to find the number of black squares contained in the rectangular area with $(A, B)$ as the top-left corner and $(C, D)$ as the bottom-right corner.

Constraints

  • $1 \leq N \leq 1000$
  • $P[i][j]$ is W or B.
  • $1 \leq Q \leq 2 \times 10^5$
  • $0 \leq A \leq C \lt 10^9$
  • $0 \leq B \leq D \lt 10^9$
  • $N, Q, A, B, C, D$ are all integers.

Input

The input is given from Standard Input in the following format. Here, $\text{query}_i$ is the $i$-th query to be processed.

$N$ $Q$
$P[0][0]P[0][1]\dots P[0][N-1]$
$P[1][0]P[1][1]\dots P[1][N-1]$
$\vdots$
$P[N-1][0]P[N-1][1]\dots P[N-1][N-1]$
$\text{query}_1$
$\text{query}_2$
$\vdots$
$\text{query}_Q$

Each query is given in the following format:

$A$ $B$ $C$ $D$

Output

Follow the instructions in the problem statement and print the answers to the queries, separated by newlines.


Sample Input 1

3 2
WWB
BBW
WBW
1 2 3 4
0 3 4 5

Sample Output 1

4
7

The figure below illustrates the upper left part of the grid.

image

For the first query, the rectangular area with $(1, 2)$ as the top-left corner and $(3, 4)$ as the bottom-right corner, surrounded by the red frame in the figure, contains four black squares.
For the second query, the rectangular area with $(0, 3)$ as the top-left corner and $(4, 5)$ as the bottom-right corner, surrounded by the blue frame in the figure, contains seven black squares.


Sample Input 2

10 5
BBBWWWBBBW
WWWWWBBBWB
BBBWBBWBBB
BBBWWBWWWW
WWWWBWBWBW
WBBWBWBBBB
WWBBBWWBWB
WBWBWWBBBB
WBWBWBBWWW
WWWBWWBWWB
5 21 21 93
35 35 70 43
55 72 61 84
36 33 46 95
0 0 999999999 999999999

Sample Output 2

621
167
44
344
500000000000000000

Output

分数:$450$分 部分 问题描述 有一个大小为$10^9$乘以$10^9$的网格。记$(i, j)$表示从顶部起第$(i + 1)$行,从左起第$(j + 1)$列的方格($0 \leq i, j \lt 10^9$)。请注意,这里的索引分配是不寻常的。 每个方格都是黑色或白色。方格$(i, j)$的颜色由字符$P[i \bmod N][j \bmod N]$表示,其中B表示黑色,W表示白色。这里,$a \bmod b$表示$a$除以$b$的余数。 回答$Q$个查询。 每个查询会给你四个整数$A, B, C, D$,并要求你找到矩形区域内的黑色方格数量,该矩形区域的左上角为$(A, B)$,右下角为$(C, D)$。 部分 约束 * $1 \leq N \leq 1000$ * $P[i][j]$是WB。 * $1 \leq Q \leq 2 \times 10^5$ * $0 \leq A \leq C \lt 10^9$ * $0 \leq B \leq D \lt 10^9$ * $N, Q, A, B, C, D$都是整数。 输入输出格式 输入 输入从标准输入按以下格式给出。这里,$\text{query}_i$是要处理的第$i$个查询。 ``` $N$ $Q$ $P[0][0]P[0][1]\dots P[0][N-1]$ $P[1][0]P[1][1]\dots P[1][N-1]$ $\vdots$ $P[N-1][0]P[N-1][1]\dots P[N-1][N-1]$ $\text{query}_1$ $\text{query}_2$ $\vdots$ $\text{query}_Q$ ``` 每个查询按以下格式给出: ``` $A$ $B$ $C$ $D$ ``` 输出 按照问题描述中的说明,按照换行符分隔,打印查询的答案。 样例 样例输入1 ``` 3 2 WWB BBW WBW 1 2 3 4 0 3 4 5 ``` 样例输出1 ``` 4 7 ``` 下图显示了网格的左上部分。 ![](https://img.atcoder.jp/abc331/2c3ff3c4018817a0839f1fbe0e7c431d.jpg) 对于第一个查询,左上角为$(1, 2)$,右下角为$(3, 4)$的矩形区域(在图中用红色边框包围)包含4个黑色方格。 对于第二个查询,左上角为$(0, 3)$,右下角为$(4, 5)$的矩形区域(在图中用蓝色边框包围)包含7个黑色方格。 样例输入2 ``` 10 5 BBBWWWBBBW WWWWWBBBWB BBBWBBWBBB BBBWWBWWWW WWWWBWBWBW WBBWBWBBBB WWBBBWWBWB WBWBWWBBBB WBWBWBBWWW WWWBWWBWWB 5 21 21 93 35 35 70 43 55 72 61 84 36 33 46 95 0 0 999999999 999999999 ``` 样例输出2 ``` 621 167 44 344 500000000000000000 ```

HINT

正方形地砖边长为n,用它来铺地面,已知地砖每个格子的颜色,请问地面区域(a, b, c, d)有多少个格子B?

加入题单

上一题 下一题 算法标签: